Приведение к стандартному виду:
\begin{gathered}\displaystyle 2,\!1 \cdot a^2 b^2 c^4 \cdot \bigg ( - 1\frac{3}{7} \bigg ) \cdot bc^3 d = - \bigg ( \frac{21}{10} \cdot \frac{10}{7} \bigg ) \cdot a^2 \cdot b^2b \cdot c^4c^3 \cdot d = = - \frac{21}{7} \cdot a^2 \cdot b^{2+1} \cdot c^{4+3} \cdot d = \boxed {- 3a^2 b^3c ^7d}\end{gathered}2,1⋅a2b2c4⋅(−173)⋅bc3d=−(1021⋅710)⋅a2⋅b2b⋅c4c3⋅d==−721⋅a2⋅b2+1⋅c4+3⋅d=−3a2b3c7d
Коэффициент одночлена: \boxed {-3}−3 .
Задание 2.
Формула для нахождения объема прямоугольного параллелепипеда (VV - объем; xx , yy , zz - измерения прямоугольного параллелепипеда): V=xyzV=xyz .
Значит, объем исходного параллелепипеда равен:
\begin{gathered}V = \Big (4a^2b^5 \Big ) \cdot \Big (3ab^2 \Big ) \cdot \Big (2ab \Big ) = \Big (4 \cdot 3 \cdot 2 \Big ) \cdot a^2aa \cdot b^5b^2b = = 24 \cdot a^{2+1+1} \cdot b^{5+2+1} =\boxed {24a^4b^8}\end{gathered}V=(4a2b5)⋅(3ab2)⋅(2ab)=(4⋅3⋅2)⋅a2aa⋅b5b2b==24⋅a2+1+1⋅b5+2+1=24a4b8
26, 42, 68, 110, 178.
77, 84, 72, 79, 67.
81, 243, 729, 2 187, 6 561.
Пошаговое объяснение:
2 + 4 = 6
6 + 4 = 10
10 + 6 = 16
16 + 10 = 26
26 + 16 = 42
42 + 26 = 68
68 + 42 = 110
110 + 68 = 178
99 - 12 = 87
87 + 7 = 94
94 - 12 = 82
82 + 7 = 89
89 - 12 = 77
77 + 7 = 84
84 - 12 = 72
72 + 7 = 79
79 - 12 = 67
1 * 3 = 3
3 * 3 = 9
9 * 3 = 27
27 * 3 = 81
81 * 3 = 243
243 * 3 = 729
729 * 3 = 2 187
2 187 * 3 = 6 561
Приведение к стандартному виду:
\begin{gathered}\displaystyle 2,\!1 \cdot a^2 b^2 c^4 \cdot \bigg ( - 1\frac{3}{7} \bigg ) \cdot bc^3 d = - \bigg ( \frac{21}{10} \cdot \frac{10}{7} \bigg ) \cdot a^2 \cdot b^2b \cdot c^4c^3 \cdot d = = - \frac{21}{7} \cdot a^2 \cdot b^{2+1} \cdot c^{4+3} \cdot d = \boxed {- 3a^2 b^3c ^7d}\end{gathered}2,1⋅a2b2c4⋅(−173)⋅bc3d=−(1021⋅710)⋅a2⋅b2b⋅c4c3⋅d==−721⋅a2⋅b2+1⋅c4+3⋅d=−3a2b3c7d
Коэффициент одночлена: \boxed {-3}−3 .
Задание 2.
Формула для нахождения объема прямоугольного параллелепипеда (VV - объем; xx , yy , zz - измерения прямоугольного параллелепипеда): V=xyzV=xyz .
Значит, объем исходного параллелепипеда равен:
\begin{gathered}V = \Big (4a^2b^5 \Big ) \cdot \Big (3ab^2 \Big ) \cdot \Big (2ab \Big ) = \Big (4 \cdot 3 \cdot 2 \Big ) \cdot a^2aa \cdot b^5b^2b = = 24 \cdot a^{2+1+1} \cdot b^{5+2+1} =\boxed {24a^4b^8}\end{gathered}V=(4a2b5)⋅(3ab2)⋅(2ab)=(4⋅3⋅2)⋅a2aa⋅b5b2b==24⋅a2+1+1⋅b5+2+1=24a4b8
26, 42, 68, 110, 178.
Закономерность №2:77, 84, 72, 79, 67.
Закономерность №3:81, 243, 729, 2 187, 6 561.
Пошаговое объяснение:
Закономерность №1:2 + 4 = 6
6 + 4 = 10
10 + 6 = 16
16 + 10 = 26
26 + 16 = 42
42 + 26 = 68
68 + 42 = 110
110 + 68 = 178
Закономерность №2:99 - 12 = 87
87 + 7 = 94
94 - 12 = 82
82 + 7 = 89
89 - 12 = 77
77 + 7 = 84
84 - 12 = 72
72 + 7 = 79
79 - 12 = 67
Закономерность №3:1 * 3 = 3
3 * 3 = 9
9 * 3 = 27
27 * 3 = 81
81 * 3 = 243
243 * 3 = 729
729 * 3 = 2 187
2 187 * 3 = 6 561
УДАЧИ! ОБРАЩАЙТЕСЬ!