Дано линейное уравнение: (1/2)*(3*x-5) = 8-(2/5)*(6-(5/2)*x) Раскрываем скобочки в левой части ур-ния 1/23*x-5 = 8-(2/5)*(6-(5/2)*x) Раскрываем скобочки в правой части ур-ния 1/23*x-5 = 8-2/56+5/2x) Приводим подобные слагаемые в правой части ур-ния: -5/2 + 3*x/2 = 28/5 + x Переносим свободные слагаемые (без x) из левой части в правую, получим: / означает дробь 3x/2=x+81/10
Переносим слагаемые с неизвестным x из правой части в левую: / означает дробь x/2=81/10
Разделим обе части ур-ния на 1/2 x = 81/10 / (1/2) Получим ответ: x = 81/5
S=a*b a=?м b=6м S=36м² а*6=36 а=36:6 а=6(м) - длина каждой клумбы S=a*b a=6м b=?м S=24м² 6*b=24 b=24:6 b=4(м) - ширина второй клумбы ответ: ширина второй клумбы 4 метра.
(1/2)*(3*x-5) = 8-(2/5)*(6-(5/2)*x)
Раскрываем скобочки в левой части ур-ния
1/23*x-5 = 8-(2/5)*(6-(5/2)*x)
Раскрываем скобочки в правой части ур-ния
1/23*x-5 = 8-2/56+5/2x)
Приводим подобные слагаемые в правой части ур-ния:
-5/2 + 3*x/2 = 28/5 + x
Переносим свободные слагаемые (без x)
из левой части в правую, получим: / означает дробь 3x/2=x+81/10
Переносим слагаемые с неизвестным x
из правой части в левую: / означает дробь x/2=81/10
Разделим обе части ур-ния на 1/2
x = 81/10 / (1/2)
Получим ответ: x = 81/5