В задании говорится о четырехзначных числах, т.е. множества из четырех чисел отличаются как составом чисел, так и их последовательностью, т.е. количество чисел находим по формуле Размещений Amn=n!(n−m)!, где n=6 - общее количество чисел, m=4 - число чисел в выборке.
Находим:
d1=A46=6!(6−4)!=3∗4∗5∗6=360
При этом нужно учесть, что числа не могут начинаться с 0, т.е. это количество чисел (начинающихся с 0) нужно вычесть из полученного количества. Первая цифра этих четырехзначных чисел известна - 0, а остальное количество чисел находим по формуле Размещения, где n=5, m=3, т.к. одна цифра (0) уже использована
d2=5!2!=3∗4∗5=60
Получили, что количество четырехзначных чисел равно D=d1−d2=360−60=300
б) цифры могут повторяться;
В задании говорится о четырех значных числах, цифры которых могут повторятся, множества из четырех чисел с повторениями отличаются как составом чисел, так и их последовательностью, т.е. количество чисел находим по формуле Размещений с повторениями (Amn)сповторениями=nm, где n=6 - общее количество чисел, m=4 - число чисел в выборке при этом нужно учесть, что на первой позиции может быть любое число кроме 0, т.е. возможная выборка - 5 чисел, поэтому количество возможных чисел можно выразить так
цифры не повторяются;
В задании говорится о четырехзначных числах, т.е. множества из четырех чисел отличаются как составом чисел, так и их последовательностью, т.е. количество чисел находим по формуле Размещений Amn=n!(n−m)!, где n=6 - общее количество чисел, m=4 - число чисел в выборке.
Находим:
d1=A46=6!(6−4)!=3∗4∗5∗6=360
При этом нужно учесть, что числа не могут начинаться с 0, т.е. это количество чисел (начинающихся с 0) нужно вычесть из полученного количества. Первая цифра этих четырехзначных чисел известна - 0, а остальное количество чисел находим по формуле Размещения, где n=5, m=3, т.к. одна цифра (0) уже использована
d2=5!2!=3∗4∗5=60
Получили, что количество четырехзначных чисел равно D=d1−d2=360−60=300
б) цифры могут повторяться;
В задании говорится о четырех значных числах, цифры которых могут повторятся, множества из четырех чисел с повторениями отличаются как составом чисел, так и их последовательностью, т.е. количество чисел находим по формуле Размещений с повторениями (Amn)сповторениями=nm, где n=6 - общее количество чисел, m=4 - число чисел в выборке при этом нужно учесть, что на первой позиции может быть любое число кроме 0, т.е. возможная выборка - 5 чисел, поэтому количество возможных чисел можно выразить так
D=5∗6∗6∗6=5∗63=1080
Объяснение:
1)
a) x² - 6x + 5 = 0;
D = 16;
X1 = 5;
X2 = 1;
ответ: 5, 1
б) x² - 5x = 0;
x (x - 5) = 0;
X = 0 или x = 5;
ответ: 0, 5
в) 6x + x²- 7 = 0
x² + 6x - 7 = 0
D=6²-4*1*7=36-28=√8=2√2
x1 = -2√2
x2 = -4√2
ответ: -2√2, -4√2
г) 3x² - 48 = 0
3 (x² - 16) = 0
(x - 4) (x + 4) = 0
x1 = 4
x2 = -4
ответ: 4, -4
2)
S = x (x - 6) = 40
x² - 6x - 40=0
D = 36 + 160 = 196 = 14²
x₁ = (6 + 14) / 2 = 10
x₂ = (6 - 14) / 2 = -4
Длина = 10
Ширина = 10 - 6 = 4
3)
х² + рх - 18 = 0
81 - 9p - 18 = 0
-9p = -63
p = 7
x² + 7x - 18 = 0
x₁ = -9 x₂ = 2
4)
х1 + х2 = -b;
x1 * x2 = c
9 - 4 = 5 b = -5
9 * (-4) = 36 c = -36
х² - 5х - 36 = 0