Войти
Регистрация
Спроси ai-bota
В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
Показать больше
Показать меньше
eliot40
10.11.2020 18:02 •
Алгебра
0<=cosx<√3/2 нужно решить неравенство
Показать ответ
Ответ:
kirill1s
15.07.2022 13:48
0,2х + 0,2х²·(8х - 3) = 0,4х²·(4х - 5)
0,2x·(1 + 0,2x·(8x - 3)) = 0,4x²·(4x - 5)
0,2x·(1 + 0,2x·(8x - 3)) - 0,4x²·(4x - 5) = 0
0,2x·(1 + 1,6x² - 0,6x) - 0,2x·2x·(4x - 5)=0
0,2x·(1 + 1,6x² - 0,6x - 8x² + 10x) = 0
0,2x·(1 + 1,6x² - 0,6x - 8x² + 10x) = 0
0,2x·(1 - 6,4x² + 9,4x) = 0
x=0 или 6,4х² - 9,4х - 1 = 0
64х² - 94 х - 10 = 0
D=94²+4·64·10=8836+2560=11396
x=(94-√11396)/128 >0 или х=(94+√11396)/128 >0
x=0 - меньший корень уравнения
0,0
(0 оценок)
Ответ:
Studio1
21.11.2021 06:27
Так как косинус четная функция, то
cos(π/2-3x)= cos (3x-π/2)
Решаем уравнение:
cos ( 3x-π/2) = √3/2
3x - π/2 = ± arccos (√3/2) + 2π·n, n∈ Z
3x - π/2 = ± (π/6) + 2π·n, n∈ Z
3x = π/2 ± (π/6) + 2π·n, n∈ Z
x = π/6 ± (π/12) + (2π/3)·n, n∈ Z
или
вычитая получим: складывая получим:
х₁= π/2 - (π/6) + (2π/3)·n, n∈ Z х₂= π/2 + (π/6) + (2π/3)·n, n∈ Z
х₁= π/3 + (2π/3)·n, n∈ Z х₂=2π/3 + (2π/3)·n, n∈ Z
при n =0 получаем корни
π/3 и 2π/3
при n = 1
(π/3) + (2π\3) = π и (2π/3) + (2π/3)= 4π/3
при n = 2
(π/3) + (2π/3)·2=(5π\3) и ( 2π/3) +(2π/3)·2=(6π\3)=2π
3π/2 <(5π/3) <2π
3π/2 < 2π≤2π
ответ. На [3π/2; 2π] два корня: (5π.3) и 2π
0,0
(0 оценок)
Популярные вопросы: Алгебра
Angel1509kl
05.01.2021 05:38
Вася вырезал из бумаги квадрат со стороной 12 и треугольник. Он смог закрыть квадратом максимум три четверти треугольника, а вот треугольником, как ни старался, смог закрыть...
Вкуснополлия
27.03.2020 00:31
Приведите подобные члены многочлена. ответы в порядке убывания степеней. 1)4x-3y²+5x+2y²2) -a²+a-6a-4a²3) c²+8-9c²-104) -2m+4m²-m³+m+m²5) 3x²y-3x²y²-3x²y²+x²y...
пстрвчлвяряу
21.11.2021 06:59
Взаимно обратные функции Задание 1 Вопрос: Найдите область определения и область значения функции, обратной данной у = 7х - 5. Выберите несколько из 6 вариантов ответа:...
Xzkto666
23.01.2020 07:58
Запишите уравнения равносильные данному...
санду7
21.12.2022 21:46
Упрости выражение (4a4−3b)⋅2b−3b⋅(8a4−4b)...
КристинаВощевоз5
21.12.2022 21:46
Запиши число в стандартном виде:790...
hdjddngddh
09.05.2021 15:38
Найти производную функции (3x^2+2x-1)/2x+1 точке х0 = 2 С объяснением...
Garri14
05.11.2020 19:54
Выражение (a-b/a+b)3 * a2+2ab+b2/a2-2ab+b2 заранее !...
Baidu
09.07.2022 08:53
(2 ) определите принадлежит ли графику функции у=-4х+5 точка (м15, 24)(5 ) установите соответствие между функциями и их графиками а) у=2х б) у=-2х+4 в) у=2х-4 г) у=2фото...
fukurochanmiup04xjx
02.08.2020 12:51
Сравните с нулём значение выражения:sin 150° * cos (-20°) / tg 7pi/5...
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota
Оформи подписку
О НАС
О нас
Блог
Карьера
Условия пользования
Авторское право
Политика конфиденциальности
Политика использования файлов cookie
Предпочтения cookie-файлов
СООБЩЕСТВО
Сообщество
Для школ
Родителям
Кодекс чести
Правила сообщества
Insights
Стань помощником
ПОМОЩЬ
Зарегистрируйся
Центр помощи
Центр безопасности
Договор о конфиденциальности полученной информации
App
Начни делиться знаниями
Вход
Регистрация
Что ты хочешь узнать?
Спроси ai-бота
0,2x·(1 + 0,2x·(8x - 3)) = 0,4x²·(4x - 5)
0,2x·(1 + 0,2x·(8x - 3)) - 0,4x²·(4x - 5) = 0
0,2x·(1 + 1,6x² - 0,6x) - 0,2x·2x·(4x - 5)=0
0,2x·(1 + 1,6x² - 0,6x - 8x² + 10x) = 0
0,2x·(1 + 1,6x² - 0,6x - 8x² + 10x) = 0
0,2x·(1 - 6,4x² + 9,4x) = 0
x=0 или 6,4х² - 9,4х - 1 = 0
64х² - 94 х - 10 = 0
D=94²+4·64·10=8836+2560=11396
x=(94-√11396)/128 >0 или х=(94+√11396)/128 >0
x=0 - меньший корень уравнения
cos(π/2-3x)= cos (3x-π/2)
Решаем уравнение:
cos ( 3x-π/2) = √3/2
3x - π/2 = ± arccos (√3/2) + 2π·n, n∈ Z
3x - π/2 = ± (π/6) + 2π·n, n∈ Z
3x = π/2 ± (π/6) + 2π·n, n∈ Z
x = π/6 ± (π/12) + (2π/3)·n, n∈ Z
или
вычитая получим: складывая получим:
х₁= π/2 - (π/6) + (2π/3)·n, n∈ Z х₂= π/2 + (π/6) + (2π/3)·n, n∈ Z
х₁= π/3 + (2π/3)·n, n∈ Z х₂=2π/3 + (2π/3)·n, n∈ Z
при n =0 получаем корни
π/3 и 2π/3
при n = 1
(π/3) + (2π\3) = π и (2π/3) + (2π/3)= 4π/3
при n = 2
(π/3) + (2π/3)·2=(5π\3) и ( 2π/3) +(2π/3)·2=(6π\3)=2π
3π/2 <(5π/3) <2π
3π/2 < 2π≤2π
ответ. На [3π/2; 2π] два корня: (5π.3) и 2π