Попробуем решить.. Значит чтобы найти путь, нужно просуммировать скорости, которые имеет точка в каждый момент времени. в момент ноль просуммировать не получится, т.к. знаменатель устремится в бесконечность (для 10 класса недопустимо). Я правильно понял, что cos(пи*Т) или все же Тcosпи? в любом случае, готов перерешать в случае чего. ну вот мы это суммируем и получается что-то вроде 1/1 *cos пи +1/корень(2) *cos (2пи)+1/корень(3)*cos (3пи) + 1/корень(9)*cos(9пи) нечетные косинусы равны минус единице, четные единице (чтобы понять начерти окружность с центром в начале координат, отметь на оси ОХ косинус. период 2пи. то есть справа будет стоять 0, 2п, 4п и тд, а слева, где пересечение оси с окружностью будет пи, 3пи и так далее.. Итак, как я уже сказал, четные косинусы =1, нечетные=-1 и получается следующее 1+1/корень(2)-1/корень(3)+1/корень(4)-1/корень(5)+1/корень(6)-1/корень(7)+1/корень(8)-1/корень(9) Ну здесь можно по разному считать. можно посчитать отдельно рациональные, если раскроешь в них корень (-1+1/2-1/3), а потом иррациональные... в общем суть ясна. У меня на калькуляторе получилось примерно 0.1275. Как-то вот так)
Х --столов с одним ящиком ((значит, и ящиков тоже х))) у --столов с двумя ящиками ((ящиков уже 2у)) тогда столов с тремя ящиками будет (х-у) и ящиков в них будет 3*(х-у) столов с четырьмя ящиками будет (14 - х - х) = (14 - 2х) и ящиков в них 4*(14-2х) итого: 33 = х+2у+3х-3у+56-8х 33 = 56-4х-у 4х+у = 56-33 = 23 у = 23 - 4х х и у -- натуральные числа и x>y ---> 4x > 4y -4x < -4y 23-4x < 23-4y у < 23-4y 5y < 23 y < 23/5 ---> y < 4.6 если у = 4 х тогда не получится целым))) если у = 3 х = 5 (и тогда столов с тремя ящиками -- 5-3=2))) если у = 7 х = 4 -- это не возможно, т.к. x > y столов с одним ящиком -- 5, с двумя ящиками 3, с тремя ящиками 2, с четырьмя ящиками 14-5-3-2=4 33 = 5+3*2+2*3+4*4 = 5+6+6+16 = 33))) к сожалению, проще у меня рассуждения не получились)))
Значит чтобы найти путь, нужно просуммировать скорости, которые имеет точка в каждый момент времени. в момент ноль просуммировать не получится, т.к. знаменатель устремится в бесконечность (для 10 класса недопустимо).
Я правильно понял, что cos(пи*Т) или все же Тcosпи? в любом случае, готов перерешать в случае чего.
ну вот мы это суммируем и получается что-то вроде
1/1 *cos пи +1/корень(2) *cos (2пи)+1/корень(3)*cos (3пи) + 1/корень(9)*cos(9пи)
нечетные косинусы равны минус единице, четные единице (чтобы понять начерти окружность с центром в начале координат, отметь на оси ОХ косинус. период 2пи. то есть справа будет стоять 0, 2п, 4п и тд, а слева, где пересечение оси с окружностью будет пи, 3пи и так далее..
Итак, как я уже сказал, четные косинусы =1, нечетные=-1 и получается следующее
1+1/корень(2)-1/корень(3)+1/корень(4)-1/корень(5)+1/корень(6)-1/корень(7)+1/корень(8)-1/корень(9)
Ну здесь можно по разному считать. можно посчитать отдельно рациональные, если раскроешь в них корень (-1+1/2-1/3), а потом иррациональные... в общем суть ясна. У меня на калькуляторе получилось примерно 0.1275. Как-то вот так)
у --столов с двумя ящиками ((ящиков уже 2у))
тогда столов с тремя ящиками будет (х-у)
и ящиков в них будет 3*(х-у)
столов с четырьмя ящиками будет (14 - х - х) = (14 - 2х)
и ящиков в них 4*(14-2х)
итого: 33 = х+2у+3х-3у+56-8х
33 = 56-4х-у
4х+у = 56-33 = 23
у = 23 - 4х
х и у -- натуральные числа и x>y
---> 4x > 4y
-4x < -4y
23-4x < 23-4y
у < 23-4y
5y < 23
y < 23/5 ---> y < 4.6
если у = 4 х тогда не получится целым)))
если у = 3 х = 5 (и тогда столов с тремя ящиками -- 5-3=2)))
если у = 7 х = 4 -- это не возможно, т.к. x > y
столов с одним ящиком -- 5,
с двумя ящиками 3,
с тремя ящиками 2,
с четырьмя ящиками 14-5-3-2=4
33 = 5+3*2+2*3+4*4 = 5+6+6+16 = 33)))
к сожалению, проще у меня рассуждения не получились)))