В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
0m1ib6c
0m1ib6c
10.07.2022 01:23 •  Алгебра

1.3 . Дәрежеге шығаруды орындаңдар : 1 ) 2 ) ; 3 ) 4 ) 0,33 ; 8 ) 5 ) 0,13 ; 6 ) 7 ) ; 3​

Показать ответ
Ответ:
гтто5
гтто5
06.04.2021 20:08
Одночлен – это произведение двух или нескольких сомножителей, каждый из которых либо число, либо буква, либо степень буквы. Например,

 

3 a 2 b 4 ,    b d 3 ,    – 17 a b c

 

- одночлены. Единственное число или единственная буква также могут считаться одночленом. Любой множитель в одночлене называетсякоэффициентом. Часто коэффициентом называют лишьчисловой множитель. Одночлены называются подобными, если они одинаковы или отличаются лишь коэффициентами. Поэтому, если два или несколько одночленов имеют одинаковые буквы или их степени, они также подобны.

Степень одночлена – это сумма показателей степеней всех его букв.

 

Сложение одночленов. Если среди суммы одночленов есть подобные, то сумма может быть приведена к более простому виду:

 

a x 3 y 2  – 5 b 3 x 3 y 2 + c 5 x 3 y 2 = ( a – 5 b 3 + c 5 ) x 3 y 2 .

 

Эта операция называетсяприведением подобных членов.Выполненное здесь действие называется также вынесением за скобки.

 

Умножение одночленов.Произведение нескольких одночленов можно упростить, если только оно содержит степени одних и тех же букв или числовые коэффициенты. В этом случае показатели степеней складываются, а числовые коэффициенты перемножаются.

П р и м е р :                        

5  a x 3 z 8 ( – 7 a 3 x 3 y 2 ) =  – 35 a 4 x 6 y2 z 8 .

Деление одночленов. Частное двух одночленов можно упростить, если делимое и делитель имеют некоторые степени одних и тех же букв или числовые коэффициенты. В этом случае показатель степени делителя вычитается из показателя степени делимого, а числовой коэффициент делимого делится на числовой коэффициент делителя.

П р и м е р :                                                                         

35 a 4 x 3 z 9 : 7 a x 2 z 6 = 5 a 3 x z 3 .

Многочлен - это алгебраическая сумма одночленов. Степень многочлена есть наибольшая из степеней одночленов, входящих в данный многочлен.

Умножение сумм и многочленов.Произведение суммы двух или нескольких выражений на любое выражение равно сумме произведений каждого из слагаемых на это выражение:

 

( p+ q+ r ) a = pa+ qa+ ra      - раскрытие скобок.

 

Вместо букв  p, q, r, a может быть взято любое выражение.

 

П р и м е р :

                        

( x+ y+ z )( a+ b ) = x( a+ b ) + y( a+ b ) + z( a+ b ) =

= xa + xb +  ya + yb +  za +  zb .

 

Произведение сумм равно сумме всех возможных произведений каждого слагаемого одной суммы на каждое слагаемое другой суммы
0,0(0 оценок)
Ответ:
liq2354234
liq2354234
04.03.2021 21:59
Здесь опять есть нюанс, связанный с тем, что же все-таки мы считаем числителем и знаменателем новой дроби. Если мы новой дробью считаем дробь с числителем 2а+b и знаменателем a(a+b), то такая дробь несократима.

Предположим, противоположное, что 1/a+1/(a+b)=(2а+b)/(a(a+b)) сократима, т.е. 2а+b и a(a+b) делятся на некоторое простое число q.  Т.к. q - простое и произведение а(a+b) на него делится, то либо а, либо a+b делится на q.
1) Пусть a делится на q. В силу равенства b=(2a+b)-2a, получаем, что b тоже делится на q, а значит дробь a/b - сократима. Противоречие.
2) Если а+b делится на q, то в силу равенств
а=(2a+b)-(a+b) и b=2(a+b)-(2a+b), получаем, что а и b тоже делятся на q и дробь а/b сократима. Противоречие. Таким образом, дробь (2а+b)/(a(a+b)) несократима.
0,0(0 оценок)
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота