1. Даны векторы а = (2,-1, 0, 3), b =(-1, 1, 2,-1, с= (2, 1, 2, он Найти а) векторы d = 3(a + b) + 2(а - b)-(a+b)+2а+с и
1 = 2C+2(a - b) — 3(a+b)
б) скалярное произведение вектора а на вектор 1:
в) длину
векторов и г
2. Найти собственные значения и собственные векторы следующих матриц
а)
6)
(36)
К1=1/3.
3у =2х -10.
У=2/3х -10/3. К2= 2/3
Графиками будут является прямые , к1 не равно к2 поэтому прямые пересекутся, координаты точки пересечения и будут решением системы.
Для построения прямой достаточно 2 точек.
У=1/3х - 8/3
Пусть Х=0 тогда
У=1/3*0 - 8/3= 8/3=
-2 2/3
А(0;-2 2/3)
Пусть Х=2 тогда
У=1/3*2-8/3= 2/3-2 2/3
= -2. В(2;-2)
Через точки А и В проведи прямую
У=2/3х -10/3
Пусть Х =0 у= - 3 1/3
С(0; -3 1/3)
Х= 1 У=2/3*1 - 3 1/3=
- 2 /2/3
D(1; -2 2/3)
Через точки С и D проведи прямую они пересекутся, из точки пересечения опусти перпендикуляры на оси Х и У это и будет решение.
(Прямые пересекутся в 4 четверти Х=2 у= -2)
К1=1/3.
3у =2х -10.
У=2/3х -10/3. К2= 2/3
Графиками будут является прямые , к1 не равно к2 поэтому прямые пересекутся, координаты точки пересечения и будут решением системы.
Для построения прямой достаточно 2 точек.
У=1/3х - 8/3
Пусть Х=0 тогда
У=1/3*0 - 8/3= 8/3=
-2 2/3
А(0;-2 2/3)
Пусть Х=2 тогда
У=1/3*2-8/3= 2/3-2 2/3
= -2. В(2;-2)
Через точки А и В проведи прямую
У=2/3х -10/3
Пусть Х =0 у= - 3 1/3
С(0; -3 1/3)
Х= 1 У=2/3*1 - 3 1/3=
- 2 /2/3
D(1; -2 2/3)
Через точки С и D проведи прямую они пересекутся, из точки пересечения опусти перпендикуляры на оси Х и У это и будет решение.
(Прямые пересекутся в 4 четверти Х=2 у= -2)