1. Найти значение производной функции в точке .
1) =9+65−2+1, 0=0
2) =1+−3+32, 0=1
3) =2−1, 0=4
4) =√+4, 0=9
2. Вычислите скорость изменения функции =() в точке .
1) ()=(√+1)√, 0=1
2) ()=2+4√−4, 0=4
3) ()=1(4−2), 0=−0,5
4) ()=2−4, 0=3
3. Найдите тангенс угла между касательной к графику функции =() в точке с абсциссой и осью .
1) ()=6−4+5, 0=1
2) ()=−5−23+2, 0=−1
3) ()=25+2, 0=54
4) ()= 3, 0=−3
1) точки пересечения
x^3=x
x^3-x=0
x(x^2-1)=0
x=0
x^2=1 x=-1 x=1
так как эти точки принадлежат прямой у=х то в них у=х
то есть (-1,1) (0,0) (1,1)
2) рассмотрим интервалы x<-1 -1<x<0 0<x<1 x>1
если х будет > х^3 значит прямая будет выше
2.1) x<-1 возьмем х из этого интервала например х=-2
x^3=-8
x>x^3 значит на этом интервале прямая выше
2.2) -1<x<0 например х=-0,5
x^3=-0,125 x<x^3 прямая ниже
2.3) 0<x<1 например х=0,5
x^3=0,125 x>x^3 прямая выше
2.4) x>1 например х=2
x^3=8 x<x^3 прямая выше
таким образом
прямая выше при x<-1 и при 0<x<1
Объяснение:
Если вклад увеличится на 10%, то он составит по отношению к первоначальному:
100% + 10% = 110%
110% = 1,1
Значит, размер вклада должен стать больше 1,1.
При увеличении вклада на 3%, к концу года вклад составит:
100% + 3% = 103%
103% = 1,03
1 * 1,03 = 1,03 - размер вклада через 1 год.
1,03 * 1,03 = 1,0609 - размер вклада через два года.
1,0609 * 1,03 ≈ 1,093 - размер вклада через три года.
1,093 * 1,03 ≈ 1,126 - размер вклада через четыре года.
1,126 > 1.1
ответ: через четыре года вклад вырастет более чем на 10%.