1. Обчисли x, якщо y дорівнює 82, використовуючи дану формулу: y=3x+2 (Якщо необхідно, відповідь округли до сотих)
2. Якщо f(z)=z10−4,3, тоді f(-10) =
3. Визнач точку графіка лінійної функції y=4x−3, абсциса якої дорівнює ординаті. Відповідь: координати точки
найти максимум, х∈(0, 40).
найдем производную от V=(40-X)(64-X)X=х³-104х²+2560х
она равна 3х²-208х+2560
найдем стационарные точки , приравняв производную к 0 , и решив кв. ур-ние 3х²-208х+2560=0
1) х=(104+√(104²-3·64·40))/3=(104+√((8·13)²-3·64·40)))/3=
=(104+√(8²(13²-3·40)))/3=(104+8√(13²-3·40))/3=(104+8√(169-120))/3=
=(104+8·7)/3=160/3
2) х=(104-√(104²-3·64·40))/3=(104-56)/3=16
ОСТАЛОСЬ по достаточному условию экстремума убедиться, что х=16 - точка максимума, проверяем знаки производной при переходе через эту точку, решаем неравенство 3х²-208х+2560>0, или простыми вычислениями для значений х из соответствующих промежутков.)
вот как-то так...-))
(a2+1)/(a1+2)=(a3+7)/(a2+1)=q
По определению арифметической прогрессии
a1+a1+d+a1+2d=39
3a1+3d=39
a1+d=13
Составим систему уравнений {a1+d=13
{(a1+d+1)(a1+2)=(a1+2d+7)/(a1+d+1)
d=13-a1
(a1+13-a1+1)/(a1+2)=(a1+26-2a1+7)/(a1+13-a1+1)
14/(a1+2)=(-a1+33)/14
(a1+2)(33-a1)=14*14
33a1+66-a^2-2a1=196
-a1^2+31a1-130=0
a1=26 или a1=5
Если a1=26, то d=13-26=-13
a2=13
a3=0
Арифметическая прогрессия.
Геометрическая b1=26+2=28
b2=13+1=14
b3=0+7=7
Если а1=5,то d=13-5=8
a2=13
a3=21
Геометрическая прогрессия: b1=5+2=7
b2=13+1=14
b3=21+7=28