Решение: Обозначим объём бассейна за 1(единицу); время работы первого насоса за (х); время работы второго насоса за (у), тогда производительность первого насоса равна 1/х производительность второго насоса равна 1/у Работая вместе оба насоса наполнят бассейн за 12 часов, что можно выразить уравнением: 12*(1/х+1/у)=1 (1) Первый насос может наполнить бассейн за 20 часов или: 20*(1/х)=1 (2) Решим получившуюся систему уравнений: 12*(1/х+1/у)=1 20*(1/х)=1 Из второго уравнения получим значение (1/х) 1/х=1/20 -подставим это значение в первое уравнение: 12*(1/20+1/у)=1 1/20+1/у=1/12 приведём уравнение к общему знаменателю 60у 3у*1+60*1=5у*1 3у+60=5у 3у-5у=-60 -2у=-60 у=-60:-2 у=30 (часов) - за такое время второй насос наполнит бассейн
Находим производные: f'(x)=3x^2-1, g'(x)=6x-4. Значение производной в точке касания определяет угловой коэффициент касательной в этой точке. Поскольку касательные параллельны, то производные можно приравнять (у касательных равны угловые коэффициенты), поэтому 3x^2-1=6x-4<=>3x^2-6x+3=0<=>x^2-2x+1=0=> =>x1=1,x2=1. f(1)=1^3-1-1=-1, g(1)=3*1^2-4*1+1=0. f'(1)=2, g'(1)=2. Составляем уравнения касательных: f(x)=>y+1=2(x-1), y=2x-3, g(x)=>y-0=2(x-1), y=2x-2. Ну, и для наглядности графики
Обозначим объём бассейна за 1(единицу);
время работы первого насоса за (х);
время работы второго насоса за (у),
тогда
производительность первого насоса равна 1/х
производительность второго насоса равна 1/у
Работая вместе оба насоса наполнят бассейн за 12 часов, что можно выразить уравнением:
12*(1/х+1/у)=1 (1)
Первый насос может наполнить бассейн за 20 часов или:
20*(1/х)=1 (2)
Решим получившуюся систему уравнений:
12*(1/х+1/у)=1
20*(1/х)=1
Из второго уравнения получим значение (1/х)
1/х=1/20 -подставим это значение в первое уравнение:
12*(1/20+1/у)=1
1/20+1/у=1/12 приведём уравнение к общему знаменателю 60у
3у*1+60*1=5у*1
3у+60=5у
3у-5у=-60
-2у=-60
у=-60:-2
у=30 (часов) - за такое время второй насос наполнит бассейн
ответ: Второй насос наполнит бассейн за 30 часов
Значение производной в точке касания определяет угловой коэффициент касательной в этой точке. Поскольку касательные параллельны, то производные можно приравнять (у касательных равны угловые коэффициенты), поэтому 3x^2-1=6x-4<=>3x^2-6x+3=0<=>x^2-2x+1=0=>
=>x1=1,x2=1. f(1)=1^3-1-1=-1, g(1)=3*1^2-4*1+1=0. f'(1)=2, g'(1)=2.
Составляем уравнения касательных: f(x)=>y+1=2(x-1), y=2x-3,
g(x)=>y-0=2(x-1), y=2x-2. Ну, и для наглядности графики