1. По чертежу запишите недостающие равные элементы данных треугольников так, чтобы треугольники ACB и AKB были равны по первому признаку равенства треугольников. А B K Мой ответ
Пусть в растворе было x граммов соли. Тогда всего было 60 + x г раствора, в котором процентность содержания соли вычисляется через пропорцию. 60 + x - это 100% x - это y %. y = x * 100/(60 + x) После добавления воды стало 80 + x граммов раствора, а концентрация соли стала y - 5% 80 + x - это 100% x - это y - 5%. y - 5 = x * 100/(80 + x) Решим систему уравнений. x * 100/(60 + x) - 5 = x * 100/(80 + x) Сократим уравнение на 5, избавимся от дробей и приведём квадратное уравнение к стандартному виду. 100x(80 + x) - 5(60 + x)(80 + x) = 100x(60 + x) 20x(80 + x) - 4800 - 60x - 80x - x^2 = 20x(60 + x) 1600x + 20x^2 - 4800 - 140x - x^2 = 1200x + 20x^2 1600x - 4800 - 140x - x^2 - 1200x = 0 x^2 - 260x + 4800 = 0 D = 260 * 260 - 4 * 4800 = 67600 - 19200 = 48400 = 220^2 x = (260 - 220)/2 = 40 : 2 = 20 г.
Пусть в растворе было x граммов соли. Тогда всего было 60 + x г раствора, в котором процентность содержания соли вычисляется через пропорцию. 60 + x - это 100% x - это y %. y = x * 100/(60 + x) После добавления воды стало 80 + x граммов раствора, а концентрация соли стала y - 5% 80 + x - это 100% x - это y - 5%. y - 5 = x * 100/(80 + x) Решим систему уравнений. x * 100/(60 + x) - 5 = x * 100/(80 + x) Сократим уравнение на 5, избавимся от дробей и приведём квадратное уравнение к стандартному виду. 100x(80 + x) - 5(60 + x)(80 + x) = 100x(60 + x) 20x(80 + x) - 4800 - 60x - 80x - x^2 = 20x(60 + x) 1600x + 20x^2 - 4800 - 140x - x^2 = 1200x + 20x^2 1600x - 4800 - 140x - x^2 - 1200x = 0 x^2 - 260x + 4800 = 0 D = 260 * 260 - 4 * 4800 = 67600 - 19200 = 48400 = 220^2 x = (260 - 220)/2 = 40 : 2 = 20 г.
ответ: раствор содержит 20 граммов соли.
Даны координаты параллелограмма: А(1; -2; 3), В(3; 2; 1), D(6; 4; 4).
1) Так как сторона DС параллельна и равна АВ, то приращения координат по осям "x", "у" и "z" у них равны.
АВ: Δx = 3-1 = 2, Δу = 2-(-2) = 4, Δz = 1-3 = -2.
Отсюда х(С) = x(D) + Δx = 6+2 = 8,
у(С) = у(D) + Δу = 4 + 4 = 8.
z(C) = z(D) + Δz = 4 - 2 = 2.
ответ: С(8; 8; 2).
2) АВ = (2; 4; -2).
|AB| = √(4 + 16 + 4) = √24 = 2√6.
AD = (6-1; 4-(-2); 4-3) = (5; 6; 1).
|AD| = √(25 + 36 + 1) = √62.
3) cos A = (2*5 + 4*6 + (-2)*1)/(2√6*√62) = 32/(4√93) = 8√93/93 = 0,829561356.
4) S(ABCD) = AB*AD*sin A = 2√6*√62*0,558415577 = 21,54065922.