1. Проекцией бокового ребра SA пирамиды является радиус описанной окружности R. H = √(SA² - R²). Найдем радиус из теоремы синусов. a/sin 60° = 2R 6√3/(√3/2) = 12 -- это 2R. R =6 H = √(10² -6² = 8. 2. Найдем производную y' = 28 * 1/cos²x - 28. Приравниваем ее нулю: 28/cos²x-28 = 0 cos²x = 1 cosx = 1 или cos x = -1 x= 2πn x= π +2πn, n∈Z. в заданный промежуток из корней принадлежит только 0. -π/40π/4 + + Функция возрастает на всем промежутке, значит наименьшее значение принимает в левом конце промежутка. min f(x) = f(-π/4) = 28*tg(-π/4) -28*(-π/4) -7π+7 = -28 +7π-7π+7 = -21.
Имеем 3 точки, принадлежащие графику функции:
А(1; 0), В(8; 0) и С(5; 24).
Составим систему их трёх уравнений, подставив в уравнение квадратного трёхчлена вида y = ax² + bx + c координаты известных точек.
a*1² + b*1 + c = 0 ,
a*8² + b*8 + c = 0,
a*5² + b*5 + c = 24.
Решение можно выполнить методом Крамера.
a b c B
25 5 1 24 Определитель 84
1 1 1 0
64 8 1 0
Заменяем 1-й столбец на вектор результатов B:
24 5 1
0 1 1 Определитель -168
0 8 1
Заменяем 2-й столбец на вектор результатов B:
25 24 1
1 0 1 Определитель 1512
64 0 1
Заменяем 3-й столбец на вектор результатов B:
25 5 24
1 1 0 Определитель -1344
64 8 0
x1= -168 / 84 = -2
x2= 1512 / 84 = 18
x3= -1344 / 84 = -16.
ответ: свободный член этого трёхчлена равен -16.
Уравнение имеет вид у = -2х² + 18х - 16.
a/sin 60° = 2R
6√3/(√3/2) = 12 -- это 2R. R =6
H = √(10² -6² = 8.
2. Найдем производную y' = 28 * 1/cos²x - 28.
Приравниваем ее нулю: 28/cos²x-28 = 0
cos²x = 1
cosx = 1 или cos x = -1
x= 2πn x= π +2πn, n∈Z. в заданный промежуток из корней принадлежит только 0.
-π/40π/4
+ +
Функция возрастает на всем промежутке, значит наименьшее значение принимает в левом конце промежутка.
min f(x) = f(-π/4) = 28*tg(-π/4) -28*(-π/4) -7π+7 = -28 +7π-7π+7 = -21.