1. Точка P отмечается от начала стороны AB остроугольного треугольника ABC, так что AP: BP = = 2: 3. AC = CP = 1 масштаб известен. Найдите значение кривой ASV так, чтобы площадь треугольника ABC была максимальной.
Пусть за х дней может закончить Катя, тогда еѐ производительность равна / х . А за у дней может закончить Алиса, тогда еѐ производительность равна / у . Т.к. они могут напечатать курсовую работу за 6 дней, то /х + /у = 1/ Если сначала % = / части курсовой напечатает Катя, а затем завершит работу Алиса, то Алисе остается % = / части курсовой. Вся курсовая работа будет выполнена за 12 дней т.е. ( /) х + (/ ) у = . Решим систему: /х + /у = / , (/) х + (/ ) у = .
+ = , + = ;
у = − , ; + * ( − , ) = *( − , )
у = − , ; , ² − + = ;
у = − , ; ² − + = ;
² − + = ; = , у = или = , у = . - не подходит, т.к. Катя печатает быстрее, чем Алиса. Значит, Катя может напечатать курсовую работу за 10 дней. ответ. за 10 дней
Поскольку переменная х входит в чётной степени, то график заданной функции симметричен относительно оси у. Производная этой функции равна нулю пр х = 0. Подставив это значение в уравнение функции, получаем у = 1. Исследуем поведение производной вблизи точки х = 0. х 0.5 0 -0.5 у' -0.6875 0 0.6875. Производная переходит с + на -, значит, при х = 0 имеем максимум функции, равный у = 1. Минимальное значение на заданном отрезке найдём, подставив значение х = +-3 в уравнение (достаточно х = 3, так как функция чётная) ymin = 1-3⁴-3⁶ = 1-3⁴*(1+3²) = 1-81*(1+9) = 1-810 = -809. ответ при (х=+-3) : умакс = 1, умин = -809.
Пусть за х дней может закончить Катя, тогда еѐ производительность равна / х .
А за у дней может закончить Алиса, тогда еѐ производительность равна / у .
Т.к. они могут напечатать курсовую работу за 6 дней,
то /х + /у = 1/
Если сначала % = / части курсовой напечатает Катя,
а затем завершит работу Алиса, то Алисе остается
% = / части курсовой.
Вся курсовая работа будет выполнена за 12 дней т.е.
( /) х + (/ ) у = .
Решим систему:
/х + /у = / ,
(/) х + (/ ) у = .
+ = ,
+ = ;
у = − , ;
+ * ( − , ) = *( − , )
у = − , ;
, ² − + = ;
у = − , ;
² − + = ;
² − + = ;
= , у =
или = , у = . - не подходит, т.к. Катя печатает быстрее, чем Алиса.
Значит, Катя может напечатать курсовую работу за 10 дней.
ответ. за 10 дней
Производная этой функции равна нулю пр х = 0.
Подставив это значение в уравнение функции, получаем у = 1.
Исследуем поведение производной вблизи точки х = 0.
х 0.5 0 -0.5
у' -0.6875 0 0.6875.
Производная переходит с + на -, значит, при х = 0 имеем максимум функции, равный у = 1.
Минимальное значение на заданном отрезке найдём, подставив значение х = +-3 в уравнение (достаточно х = 3, так как функция чётная) ymin = 1-3⁴-3⁶ = 1-3⁴*(1+3²) = 1-81*(1+9) = 1-810 = -809.
ответ при (х=+-3) : умакс = 1,
умин = -809.