Условием существования арифметической прогрессии является то, что разность между a(n) и a(n-1) остается неизменной для всех членов прогрессии: a₂-a₁=a₃-a₂=a(n)-a(n-1)=d, d - разность арифм. прогрессии. 4 предложенных последовательности рассмотрим на 1-х 3-х ее членах: 1. Последовательность квадратов натуральных чисел. a₁=1²; a₂=2²; a₃=3² => 4-1≠9-4 - данная последовательность не является арифметической прогрессией. 2. Последовательность всех правильных дробей, числитель которых на 2 меньше знаменателя. a₁=1/3; a₂=2/4; a₃=3/5 => (2/4-1/3=1/6; 3/5-2/4=1/10) 1/6≠1/10 - данная последовательность чисел - не арифметическая прогрессия. 3. Последовательность натуральных степеней числа 5. a₁=5¹; a₂=5²; a₃=5³ => 25-5≠125-25 - это не арифметическая прогрессия. 4. Последовательность натуральных чисел, кратных 5. Признак делимости на 5 - число должно оканчиваться на 5 или 0. a₁=5; a₂=10; a₃=15 => 10-5=15-10, d=5 - данная последовательность является арифметической прогрессией. ответ: 4)
Пусть а, b и с — три цифры, задуманные Васей. Существует девять двузначных чисел, в десятичной записи которых используются только эти цифры: ; ; ; ; ; ; ; ; . Найдем их сумму, разложив каждое из чисел в виде суммы разрядных слагаемых: (10a + a) + (10b + b) + (10c + c) + (10a + b) + (10b + a) + (10a + c) + (10c + a) + (10b + c) + (10c + b) = 33a + 33b + 33c = 33(a + b + c). По условию, 33(a + b + c) = 231, то есть, a + b + c = 7. Существует единственная тройка различных и отличных от нуля цифр, сумма которых равна 7.
4 предложенных последовательности рассмотрим на 1-х 3-х ее членах:
1. Последовательность квадратов натуральных чисел.
a₁=1²; a₂=2²; a₃=3² => 4-1≠9-4 - данная последовательность не является арифметической прогрессией.
2. Последовательность всех правильных дробей, числитель которых на 2 меньше знаменателя.
a₁=1/3; a₂=2/4; a₃=3/5 => (2/4-1/3=1/6; 3/5-2/4=1/10) 1/6≠1/10 - данная последовательность чисел - не арифметическая прогрессия.
3. Последовательность натуральных степеней числа 5.
a₁=5¹; a₂=5²; a₃=5³ => 25-5≠125-25 - это не арифметическая прогрессия.
4. Последовательность натуральных чисел, кратных 5.
Признак делимости на 5 - число должно оканчиваться на 5 или 0.
a₁=5; a₂=10; a₃=15 => 10-5=15-10, d=5 - данная последовательность является арифметической прогрессией.
ответ: 4)
1,2,4
Объяснение:
Пусть а, b и с — три цифры, задуманные Васей. Существует девять двузначных чисел, в десятичной записи которых используются только эти цифры: ; ; ; ; ; ; ; ; . Найдем их сумму, разложив каждое из чисел в виде суммы разрядных слагаемых: (10a + a) + (10b + b) + (10c + c) + (10a + b) + (10b + a) + (10a + c) + (10c + a) + (10b + c) + (10c + b) = 33a + 33b + 33c = 33(a + b + c). По условию, 33(a + b + c) = 231, то есть, a + b + c = 7. Существует единственная тройка различных и отличных от нуля цифр, сумма которых равна 7.