171. С графика функции y=f(x)=x²– 5х+6 постройте графики следующих функций: 1) y = f (x-1); 2) y = f(x/3); 3)y = f (2х); 4) у = 3f(x/3) +1; 5) y =-f(х); 6) y = 2f(x) – 3; 7) y=-f(–x); 8) y = 2f(x+1) +5. до завтра
(1) (2) Прежде всего построим графики заданных функций. (См рис1.FIGURE.png) Далее. Найдем точки пересечения графиков. Из картинки видно, что точки пересечения (Обозначим их А0 и А2) имеют координаты А0(-1; 0) и А2(2; 3). Убедиться в этом можно, подставив уравнения (1) и (2) поочередно координаты точек и проверить, обращаются ли они в верные равенства. строго говоря, для нахождения координат точек пересечения в нашем случае решается система уравнений (1), (2): (1) (2) Два уравнения, два неизвестных.
Приравнивая правые части (1), (2) получаем одно уравнение с одним неизвестным:
Приводим подобные слагаемые.
(3) Решаем полученное уравнение (3)
Соответствующие им значения y1, y2 можно найти, подставив например значения x1, x2 в уравнение (2)
Вот мы и получили две точки А0(x1; y1), A2(x2, y2)
Они нам понадобятся при простановке пределов интегрирования. Так теперь Разберемся, что получится, если нашу фигуру вращать вокруг оси OX. Смотрим риснуок 2 (FIGURE_OX.png), На котором изображено поперечное сечение, полученной фигуры вращения. Такая "чаша", со стенками переменной толщины. В сечении наша исходная фигура (параболический сегмент) зеркально отразилась относительно оси OX. Точки с координатами (x, y) отразились в точки (x, -y). Соответственно прямая y=x+1 отразилась в y=-x-1, а парабола в параболу . Объем "чаши" будет равен: (4) где объем фигуры ограниченной, параболами и плоскостью перпендикулярной плоскости рисунка и проходящей через прямую . ? , объем конуса ограниченного прямыми и той же плоскостью проходящей через
Если нашу "чашу" без выемки конуса "нашинковать" плоскостями перпендикулярными плоскости рисунка и при этом параллельными плоскости основания конуса, мы разбиваем ее на множество мелких ("блинов") элементарных цилиндров толщиной dx. Объем каждого такого цилиндра будет равен:
Суммарный объем будет равен сумме объемов элементарных цилиндров. Переходя к пределу при dx⇒0 получаем: (5)
(6)
(7) С учетом (7) интеграл (6) равен: (8)
Аналогично объем конуса равен (9) Проделывая вычисления находим: (10) Тогда с учетом (4), (8), (10) искомый объем равен:
Вкратце по 2му пункту смотрите рисунок 3 (FIGURE_OY). Тут наша фигура получилась более "хитрая". Придется, дробить область на части
Сам объем будем искать в виде такой суммы: Объем усеченного "криволинейного конуса" (сечение А9, А1, А2, А8) - Объем конуса (А9, А0, А1) + объем ус. конуса(А2, А3, А5, А7) + объем "криволинейного конуса"(А3, А4, А6, А7) - объем "криволинейного конуса" (А5, А4, А6).
Черт возьми! >5000 символов не лезет. Но надеюсь, принцип ясен.
Рациональным числом называется такое число,которое не представляется в виде бесконечной периодической дроби. А вот иррациональное - бесконечная периодическая дробь. Иначе говоря,корень должен быть "тяжело извлекаем" в случае иррационального числа. Вот,например случай 2)-рациональное,очевидно,это 13. Рассмотрим случай 4).Переведём подкоренное в неправильную дробь - 25\4,корень извлекается,будет 5\2,следовательно,число рациональное. В случае 3) степень чётная,поэтому при перемножении можно убедиться,что число будет рациональным(целым здесь) Из 1,6 корень не извлечём. Хочется 4 приплести,да не выйдет. Не так давно объясняла другому человеку случай 4). Послушайте,если вам на экзамене попадутся десятичные дроби под корнями и потребуется выбрать рациональное число,берите ТО,У КОТОРОГО ПОСЛЕ ЗАПЯТОЙ ЧЁТНОЕ КОЛИЧЕСТВО ЗНАКОВ. Здесь 1 запятая после запятой.Случай 1 вылетает.
(2)
Прежде всего построим графики заданных функций. (См рис1.FIGURE.png)
Далее. Найдем точки пересечения графиков. Из картинки видно, что точки пересечения (Обозначим их А0 и А2) имеют координаты А0(-1; 0) и А2(2; 3).
Убедиться в этом можно, подставив уравнения (1) и (2) поочередно координаты точек и проверить, обращаются ли они в верные равенства.
строго говоря, для нахождения координат точек пересечения в нашем случае решается система уравнений (1), (2):
(1)
(2)
Два уравнения, два неизвестных.
Приравнивая правые части (1), (2) получаем одно уравнение с одним неизвестным:
Приводим подобные слагаемые.
(3)
Решаем полученное уравнение (3)
Соответствующие им значения y1, y2 можно найти, подставив например значения x1, x2 в уравнение (2)
Вот мы и получили две точки А0(x1; y1), A2(x2, y2)
Они нам понадобятся при простановке пределов интегрирования.
Так теперь Разберемся, что получится, если нашу фигуру вращать вокруг
оси OX. Смотрим риснуок 2 (FIGURE_OX.png), На котором изображено поперечное сечение, полученной фигуры вращения. Такая "чаша", со стенками переменной толщины.
В сечении наша исходная фигура (параболический сегмент) зеркально отразилась относительно оси OX. Точки с координатами (x, y) отразились
в точки (x, -y). Соответственно прямая y=x+1 отразилась в y=-x-1, а парабола в параболу .
Объем "чаши" будет равен:
(4)
где
объем фигуры ограниченной, параболами и плоскостью перпендикулярной плоскости рисунка и проходящей через прямую .
? , объем конуса ограниченного прямыми и той же плоскостью проходящей через
Если нашу "чашу" без выемки конуса "нашинковать" плоскостями перпендикулярными плоскости рисунка и при этом параллельными плоскости основания конуса, мы разбиваем ее на множество мелких
("блинов") элементарных цилиндров толщиной dx. Объем каждого такого цилиндра будет равен:
Суммарный объем будет равен сумме объемов элементарных цилиндров.
Переходя к пределу при dx⇒0 получаем:
(5)
(6)
(7)
С учетом (7) интеграл (6) равен:
(8)
Аналогично объем конуса равен
(9)
Проделывая вычисления находим:
(10)
Тогда с учетом (4), (8), (10) искомый объем равен:
Вкратце по 2му пункту смотрите рисунок 3 (FIGURE_OY). Тут наша фигура получилась более "хитрая". Придется, дробить область на части
Сам объем будем искать в виде такой суммы:
Объем усеченного "криволинейного конуса" (сечение А9, А1, А2, А8) - Объем конуса (А9, А0, А1) + объем ус. конуса(А2, А3, А5, А7) + объем "криволинейного конуса"(А3, А4, А6, А7) - объем "криволинейного конуса" (А5, А4, А6).
Черт возьми! >5000 символов не лезет. Но надеюсь, принцип ясен.
А вот иррациональное - бесконечная периодическая дробь.
Иначе говоря,корень должен быть "тяжело извлекаем" в случае иррационального числа.
Вот,например случай 2)-рациональное,очевидно,это 13.
Рассмотрим случай 4).Переведём подкоренное в неправильную дробь - 25\4,корень извлекается,будет 5\2,следовательно,число рациональное.
В случае 3) степень чётная,поэтому при перемножении можно убедиться,что число будет рациональным(целым здесь)
Из 1,6 корень не извлечём.
Хочется 4 приплести,да не выйдет.
Не так давно объясняла другому человеку случай 4).
Послушайте,если вам на экзамене попадутся десятичные дроби под корнями и потребуется выбрать рациональное число,берите ТО,У КОТОРОГО ПОСЛЕ ЗАПЯТОЙ ЧЁТНОЕ КОЛИЧЕСТВО ЗНАКОВ.
Здесь 1 запятая после запятой.Случай 1 вылетает.