2) [6] Теплоход, собственная скорость которого 18 км/ч 10 км по течению реки и 16 км против течения, затратив на весь путь 1 час 30 минут. Какова скорость течения реки?
Пусть мальчиков m, девочек d. Тогда 100% * m + 100% * d = 130% * m + 50% * d 30 % m = 50% d 3m = 5d
Так как 30% * m = 3m/10 - целое число, то m делится на 10. Обозначим m = 10M и подставим в равенство. 3 * 10M = 5d 6M = d
Отсюда число девочек делится на 6 (заметим, что при этом условии 50% девочек - гарантированно целое число). После обозначения d = 6D равенство превращается в издевательское: 6M = 6D M = D
Очевидно, минимум будет достигаться, если M = D = 1. Тогда m = 10 и d = 6.
Можно было сразу после заключения о том, что m делится на 10, начать перебирать возможные m. ответ при этом получился бы быстрее.
Из левой части получим правую для чего домножим числитель и знаменатель левой части на сумму (sinα+cosα)
((sinα+cosα)²)/((cosα-sinα)(sinα+cosα)) Числитель разложим по формуле
(а+в)²=а²+2ав+в², а знаменатель по формуле (а-в)*(а+в)=а²- в², и почленно разделим числитель на знаменатель, предварительно применив формулу косинуса двойного аргумента cos²α-sin²α=cos2α; синуса двойного аргумента 2sinα*cosα= sin2α и основное тригонометрическое тождество sinα²+cos²α=1.
100% * m + 100% * d = 130% * m + 50% * d
30 % m = 50% d
3m = 5d
Так как 30% * m = 3m/10 - целое число, то m делится на 10. Обозначим m = 10M и подставим в равенство.
3 * 10M = 5d
6M = d
Отсюда число девочек делится на 6 (заметим, что при этом условии 50% девочек - гарантированно целое число). После обозначения d = 6D равенство превращается в издевательское:
6M = 6D
M = D
Очевидно, минимум будет достигаться, если M = D = 1. Тогда m = 10 и d = 6.
Можно было сразу после заключения о том, что m делится на 10, начать перебирать возможные m. ответ при этом получился бы быстрее.
Из левой части получим правую для чего домножим числитель и знаменатель левой части на сумму (sinα+cosα)
((sinα+cosα)²)/((cosα-sinα)(sinα+cosα)) Числитель разложим по формуле
(а+в)²=а²+2ав+в², а знаменатель по формуле (а-в)*(а+в)=а²- в², и почленно разделим числитель на знаменатель, предварительно применив формулу косинуса двойного аргумента cos²α-sin²α=cos2α; синуса двойного аргумента 2sinα*cosα= sin2α и основное тригонометрическое тождество sinα²+cos²α=1.
(sinα²+2sinα*cosα+cos²α)/(cos²α-sin²α)=(1+sin2α)/(cos2α)=
1/cos2α+(sin2α)/(cos2α)=tg2α+(1/cos2α) , что и требовалось доказать.