2. График какой из функций у=-2х + 1, y=-х, y = 6х + 3 проходит через начало координат? Постройте
этот график.
3. Постройте график функции y=-0,5х + 2.
4. Не выполняя построения, найдите координаты точек
пересечения графика функции y= 1,5х + 3 с осями коорди-
нат.
5. Задайте формулой линейную функцию, график кото-
рой проходит через точку Р(-2; 0) и параллелен графику
функции y= 1,5х + 1.
x∈∅
Объяснение:
log₄ (16-16·x) < log₄ (x²-3·x+2)+log₄ (x+6)
ОДЗ (область допустимых значений):
16-16·x>0, x²-3·x+2>0, x+6>0 ⇔ 1>x, (x-1)·(x-2)>0, x>-6 ⇔
⇔ x∈(-∞; 1), x∈(-∞; 1)∪(2; +∞), x∈(-6; +∞) ⇔ x∈(-6; 1).
Решение.
log₄ (16-16·x) < log₄ (x²-3·x+2)·(x+6), так как 4>1 :
(16-16·x) < (x²-3·x+2)·(x+6)
0<(x-1)·(x-2)·(x+6)-16·(1-x)
(x-1)·(x-2)·(x+6)+16·(x-1)>0
(x-1)·((x-2)·(x+6)+16)>0
(x-1)·(x²+4·x-12+16)>0
(x-1)·(x²+4·x+4)>0
(x-1)·(x+2)²>0, так как строгое неравенство, то x≠-2, тогда
x-1>0
x>1
x∈(1; +∞).
Вместе с ОДЗ:
x∈(1; +∞)∩(-6; 1) ⇒ x∈∅.
я сразу решение буду писать)
(1-cos2x)/2 + (1-cos4x)/2 - 1+cos6x/2 - 1 + cos8x/2==0
домножим на 2 чтобы сократить знаменатель
и получаем
1 - cos2x + 1 - cos4x - 1 + cos6x - 1 + cos8x=0
-cos2x - cos4x + cos6x + cos8x=0
дальше решаем методом группировки
-(cos2x + cos4x)+(cos6x+cos8x)=0
видим что в каждой скобке формула суммы косинусов
-2cos(2+4)/2 * cos(2-4)/2 - 2cos(6+8)/2 * cos(6-8)/2 (минус я вперед сразу вытащил
2cos3x*cosx - 2cos7x*cosx=0
выносим 2cosx за скобки и снова видим что у нас формула в скобках разность косинусов
2cosx(cos3x - cos7x)=0
2cosx(-2sin(-2x)*sin5x)=0
2cosx(2sin2x*sin5x)=0
разделим на 2 чтоб двойки не мешали
теперь каждое приравниваем к 0
1) cosx=0
ответ: x=P/2 +pn n принадлежит z
2) sin2x=0
2x=Pk
ответ : x = Pk/2 k принадлежит z
3) sin5x=0
5x=Pm
ответ: x = Pm/5
ну вот три ответа)
решение правильное так как подобные уже решал)
Если что-то не понятно пиши)