1. Дана арифметическая прогрессия (an). Известно, что a1=2,5 и d=1,6.
Вычисли сумму первых шести членов арифметической прогрессии.
Запиши ответ в виде числа, при необходимости округлив его до десятых:
2.Вычисли 9-й член арифметической прогрессии, если известно, что a1 = 1,9 и d = 4,9.
a9 =
3.Вычисли сумму первых 6 членов арифметической прогрессии (an), если даны первые члены: −1;6...
S6 =
4.Дана арифметическая прогрессия: −2;−4...
Вычисли разность прогрессии и третий член прогрессии.
d=
b3=
5.Найди следующие два члена арифметической прогрессии и сумму первых четырёх членов, если a1=8 и a2=0,5.
a3=
a4=
S4
Объяснение:
здається так
1. Дана арифметическая прогрессия (an). Известно, что a1=2,5 и d=1,6.
Вычисли сумму первых шести членов арифметической прогрессии.
Запиши ответ в виде числа, при необходимости округлив его до десятых:
2.Вычисли 9-й член арифметической прогрессии, если известно, что a1 = 1,9 и d = 4,9.
a9 =
3.Вычисли сумму первых 6 членов арифметической прогрессии (an), если даны первые члены: −1;6...
S6 =
4.Дана арифметическая прогрессия: −2;−4...
Вычисли разность прогрессии и третий член прогрессии.
d=
b3=
5.Найди следующие два члена арифметической прогрессии и сумму первых четырёх членов, если a1=8 и a2=0,5.
a3=
a4=
S4
Объяснение:
здається так
tg α – tg β = tg (α – β) (1 + tg α tg β).
Получаем:
tg x tg 2x tg 3x = tg 3x – tg x + tg 4x – tg 2x,
tg x tg 2x tg 3x = tg 2x (1 + tg x tg 3x) + tg 2x (1 + tg 2x tg 4x),
tg 2x (1 + tg x tg 3x – tg x tg 3x + 1 + tg 2x tg 4x) = 0,
tg 2x = 0 или tg 2x tg 4x = –2.
С первым понятно, что делать. Второе:
tg 2x tg 4x = –2,
tg 2x · 2 tg 2x / (1 – tg² 2x) = –2,
tg² 2x = tg² 2x – 1.
Это равенство невозможно.
Все решения получаются из уравнения tg 2x = 0, то есть 2x = πn, x = πn/2. Значения с нечётными n не подходят (tg x и tg 3x не существуют) , значит, ответ x = πk. Возможно так