а) x€ (-∞;-4)U(2;+∞)
б) x€∅
Объяснение:
N°1:
Т. к. основание логарифма 2 > основание 1 => знак неравенства не меняется
D = b²-4ac = 4+32 = 36 = 6²
х1= 2; х2 = -4
(х-2)(х+4) > 0
х€ (-∞; -4)U(2;+∞)
ОДЗ: х²+2х > 0
х(х+2) > 0
Значит:
х€ (-∞; -2)U(0;+∞)
Получаем систему:
{x€ (-∞;-4)U(2;+∞)
{x € (-∞;-2)U(0;+∞)
Отсюда:
x€ (-∞;-4)U(2;+∞)
ответ: x€ (-∞;-4)U(2;+∞)
N°2:
Т. к основание логарифма 1/3 < основания 1 => знак неравенства меняется
2х+5 < х-4
х <-9
х€ (-∞; -9)
ОДЗ:
{2х+5 > 0
{х-4 > 0
Получаем:
{х> -2,5
{х>4
х€ (4;+∞)
{х€ (-∞;-9)
{х€ (4;+∞)
Отсюда: х€∅
ответ: х€∅
Арифметическая прогрессия - это последовательность чисел, каждый член которой, начиная со 2-го, равен предыдущему, сложенному с одним и тем же числом.
Это число называют разностью арифметической прогрессии и обозначают d.
Значит, а₂ = а₁ + d, a₃ = a₂ + d = а₁ + 2d, ..., an = a₁ + d(n - 1) - формула n-го члена.
Т.к. а₁ = 8, а₇ =26, то используя формулу n-го члена можно записать:
а₇ = а₁ + d(7 - 1), а₇ = а₁ + 6d, 26 = 8 + 6d, откуда 6d = 26 - 8 = 18, т.е. d = 3.
Сумму n первых членов арифметической прогрессии находят по формуле Sn = (a₁ + an)/2 · n или Sn = (2a₁ + d(n - 1))/2 · n.
S₁₀ = (2 · 8 + 3(10 - 1))/2 · 10 = (16 + 3 · 9)/2 · 10 = (16 + 27) · 5 = 43 · 5 = 215.
ответ: 215.
а) x€ (-∞;-4)U(2;+∞)
б) x€∅
Объяснение:
N°1:
Т. к. основание логарифма 2 > основание 1 => знак неравенства не меняется
D = b²-4ac = 4+32 = 36 = 6²
х1= 2; х2 = -4
(х-2)(х+4) > 0
х€ (-∞; -4)U(2;+∞)
ОДЗ: х²+2х > 0
х(х+2) > 0
Значит:
х€ (-∞; -2)U(0;+∞)
Получаем систему:
{x€ (-∞;-4)U(2;+∞)
{x € (-∞;-2)U(0;+∞)
Отсюда:
x€ (-∞;-4)U(2;+∞)
ответ: x€ (-∞;-4)U(2;+∞)
N°2:
Т. к основание логарифма 1/3 < основания 1 => знак неравенства меняется
2х+5 < х-4
х <-9
Значит:
х€ (-∞; -9)
ОДЗ:
{2х+5 > 0
{х-4 > 0
Получаем:
{х> -2,5
{х>4
Значит:
х€ (4;+∞)
Получаем систему:
{х€ (-∞;-9)
{х€ (4;+∞)
Отсюда: х€∅
ответ: х€∅
Арифметическая прогрессия - это последовательность чисел, каждый член которой, начиная со 2-го, равен предыдущему, сложенному с одним и тем же числом.
Это число называют разностью арифметической прогрессии и обозначают d.
Значит, а₂ = а₁ + d, a₃ = a₂ + d = а₁ + 2d, ..., an = a₁ + d(n - 1) - формула n-го члена.
Т.к. а₁ = 8, а₇ =26, то используя формулу n-го члена можно записать:
а₇ = а₁ + d(7 - 1), а₇ = а₁ + 6d, 26 = 8 + 6d, откуда 6d = 26 - 8 = 18, т.е. d = 3.
Сумму n первых членов арифметической прогрессии находят по формуле Sn = (a₁ + an)/2 · n или Sn = (2a₁ + d(n - 1))/2 · n.
S₁₀ = (2 · 8 + 3(10 - 1))/2 · 10 = (16 + 3 · 9)/2 · 10 = (16 + 27) · 5 = 43 · 5 = 215.
ответ: 215.