1) Найдём производную: y' = 3x² + 18x + 15; Решим уравнение: 3x² + 18x + 15 = 0, x + 6x + 5 = 0, по теореме Виета: x₁ + x₂ = - 6, x₁ · x₂ = 5 ⇒
x₁ = - 1; x₂ =- 5 ⇒ на промежутке ( - ∞, - 5) функция возрастает;
на ( -5, - 1) убывает и на ( - 1, + ∞) возрастает, таким образом ( -5) - точка максимума, (-1) - точка минимума.
Вычислим: y (- 5) = (-5)³ + 9 · (-5)² + 15 · (-5) - 25 = 0; y (-1) = (-1)³ + 9 · (-1)² + 15 · (-1) - 25 = - 32
Итак: Строим график - От ( +∞) до точки ( - 5; 0) функция возрастает; От точки ( -5; 0) до точки (- 1; - 32) функция убывает и от точки ( -1; - 32)
до (-∞) возрастает.
Точки перегиба: ( -5; 0) и (- 1; - 32)
1) Cosx = t
6t² + t -1 = 0
D = b² -4ac = 1 - 4*6*(-1) = 25 > 0
t₁ = (-1+5)/12 = 4/12 = 1/3
t₂ = (-1 -5)/12 = -1/2
a) Cosx = 1/3 б) Сosx = -1/2
x = +-arcCos(1/3) + 2πk , k ∈Z x = +-arcCos(-1/2) + 2πn , n ∈Z
x = +- 2π/3 +2πn , n ∈ Z
2) учтём, что Cosx = 2Cos²x/2 -1
наше уравнение:
Cosx/2 = 1 + 2Cos²x/2 -1
Cosx/2 = t
2Cos²x/2 - Cosx/2 = 0
Cosx/2(2Cosx/2 -1) = 0
Cosx/2 = 0 или 2Cosx/2 -1 = 0
x/2 = π/2 + 2πk , k ∈Z Cosx/2 = 1/2
x = π + 4πk , k ∈ Z x/2 = +-arcCos(1/2) + 2πn , n ∈ Z
x/2= +- π/3+ 2πn , n ∈ Z
x = +-2π/3 + 4 πn , n ∈ Z
1) Найдём производную: y' = 3x² + 18x + 15; Решим уравнение: 3x² + 18x + 15 = 0, x + 6x + 5 = 0, по теореме Виета: x₁ + x₂ = - 6, x₁ · x₂ = 5 ⇒
x₁ = - 1; x₂ =- 5 ⇒ на промежутке ( - ∞, - 5) функция возрастает;
на ( -5, - 1) убывает и на ( - 1, + ∞) возрастает, таким образом ( -5) - точка максимума, (-1) - точка минимума.
Вычислим: y (- 5) = (-5)³ + 9 · (-5)² + 15 · (-5) - 25 = 0; y (-1) = (-1)³ + 9 · (-1)² + 15 · (-1) - 25 = - 32
Итак: Строим график - От ( +∞) до точки ( - 5; 0) функция возрастает; От точки ( -5; 0) до точки (- 1; - 32) функция убывает и от точки ( -1; - 32)
до (-∞) возрастает.
Точки перегиба: ( -5; 0) и (- 1; - 32)
1) Cosx = t
6t² + t -1 = 0
D = b² -4ac = 1 - 4*6*(-1) = 25 > 0
t₁ = (-1+5)/12 = 4/12 = 1/3
t₂ = (-1 -5)/12 = -1/2
a) Cosx = 1/3 б) Сosx = -1/2
x = +-arcCos(1/3) + 2πk , k ∈Z x = +-arcCos(-1/2) + 2πn , n ∈Z
x = +- 2π/3 +2πn , n ∈ Z
2) учтём, что Cosx = 2Cos²x/2 -1
наше уравнение:
Cosx/2 = 1 + 2Cos²x/2 -1
Cosx/2 = t
2Cos²x/2 - Cosx/2 = 0
Cosx/2(2Cosx/2 -1) = 0
Cosx/2 = 0 или 2Cosx/2 -1 = 0
x/2 = π/2 + 2πk , k ∈Z Cosx/2 = 1/2
x = π + 4πk , k ∈ Z x/2 = +-arcCos(1/2) + 2πn , n ∈ Z
x/2= +- π/3+ 2πn , n ∈ Z
x = +-2π/3 + 4 πn , n ∈ Z