1. Решим квадратное уравнение: . Т. к. дискриминант равен нулю, то корень здесь один: . Парабола касается оси Ox в точке (1;0), а так как коэффициент при иксе в квадрате положительный, значит, ветви параболы направлены вверх. Из этого следует, что y>0 при x∈(-∞; 1)∪(1; +∞), а при x=1 функция равна нулю
2. Область определения функции -- это x∈[0; +∞). Т. к. квадратный корень из числа всегда равен неотрицательному числу, к которому к тому же прибавляется два (в данной функции), то на всей области определения функция положительна: y>0 при x∈[0; +∞).
3. Область определения функции -- это x∈[-2; +∞). Функция равна нулю при x=-2, а на остальной области определения положительна: y>0 при x∈(-2; +∞).
1. Решим квадратное уравнение: . Т. к. дискриминант равен нулю, то корень здесь один: . Парабола касается оси Ox в точке (1;0), а так как коэффициент при иксе в квадрате положительный, значит, ветви параболы направлены вверх. Из этого следует, что y>0 при x∈(-∞; 1)∪(1; +∞), а при x=1 функция равна нулю
2. Область определения функции -- это x∈[0; +∞). Т. к. квадратный корень из числа всегда равен неотрицательному числу, к которому к тому же прибавляется два (в данной функции), то на всей области определения функция положительна: y>0 при x∈[0; +∞).
3. Область определения функции -- это x∈[-2; +∞). Функция равна нулю при x=-2, а на остальной области определения положительна: y>0 при x∈(-2; +∞).
1.
а) 3b+(5a–7b) = 3b+5a–7b = 5a–4b
б) –(8c–4) +4 = –8c+4+4 = 8–8c
в) (2+3x) +(7x–2) = 2+3x+7x–2 = 10x
г) 3(8m–4)+6m = 3×8m–3×4+6m=24m–12+6m=30m–12
д) 15–5(1–a)–6a = 15–5–5a–6a= 10–11a
е) (2a–7y)–(5a–7) = 2a–7y–5a+7 = –3a–7y±7
ж) 14b–(15b+y)–(y+10b) = 14b–15b–y–y–10b = –11b–2y
з) 7(5a+8)–11a–58 = 7×5a+7×8–11a–58 = 35a+56–11a–58 = 24a–2
и) 9x+3(15–8x)–35 = 9x+3×15–3×8x–35 = 9x+45–24x–35 = 10–15x
к) 33–8(11b–1) –2b = 33–8×11b–8–2b = 33–88b–8–2b = 25–90b
2.
а) 0,7b+0,3(b–5) = 0,7b+0,3b–0,3×5 = b–1,5 = –0,81–1,5 = –2,31
б) (y–7)–(14–y) = y–7–14+y = 2y–21 = –0,6–21= –21,6
Объяснение:
Алгебра мой конёк)
Надеюсь