В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
angelala123
angelala123
27.07.2022 02:03 •  Алгебра

38.5 упростите дробно-рациональное выражение
1)x⁷+x⁵/x⁴+x²
3) a⁷-a¹⁰/a⁵-a²
5)a-2b/2b-a
7)(-a -b)²/a+b
заранее большое !​


38.5 упростите дробно-рациональное выражение1)x⁷+x⁵/x⁴+x²3) a⁷-a¹⁰/a⁵-a²5)a-2b/2b-a7)(-a -b)²/a+bзар

Показать ответ
Ответ:
vovalomov00
vovalomov00
16.02.2021 15:34
F(x) = (x²) * (e^x)
Решение
Находим первую производную функции:
y' = (x²)*(e^x) + (2x)*(e^x)
или
y' = x*(x+2)*(e^x)
Приравниваем ее к нулю:
x*(x+2)*(e^x) = 0
x₁ = - 2
x₂ = 0
Вычисляем значения функции 
f(-2) = 4/e²
f(0) = 0
ответ: fmin = 0, fmax = 4/e2
Используем достаточное условие экстремума функции одной переменной. Найдем вторую производную:
y'' = x²*(e^x) + (4x)*(e^x) + 2*(e^x)
или
y'' = (x² + 4x + 2)*(e^x)
Вычисляем:
y''(-2) = - 2/e² < 0 - значит точка x = - 2 точка максимума функции.
y''(0) = 2 > 0 - значит точка x = 0 точка минимума функции.
0,0(0 оценок)
Ответ:
mistrgeniy
mistrgeniy
16.02.2021 15:34

Сначала разделим левую и правую часть уравнения на x, получим:

y'+\frac{2}{x}y=\frac{1}{x^2} 

Решим сначала однородное уравнение, вида:

y'+\frac{2}{x}y=0 

Это уравнение с разделяющимися переменными, получаем:\frac{dy}{dx}+\frac{2}{x}y=0

 

\frac{dy}{dx}=-\frac{2}{x}y

 

\frac{dy}{y}=-\frac{2}{x}dx

Берем интеграл от обоих частей получаем: 

 

\int{\frac{dy}{y}}=-\int\frac{2}{x}dx

ln(y)=-2ln(x) 

y=\frac{C}{x^2} 

Дальше методом вариации свободной постоянной ищем частное решение неоднородного уравнения:

Представляем C как функцию от х, т.е C=C(x) и подставляем выражение   y=\frac{C(x)}{x^2} в исходное уравнение. Получаем:

\frac{xC'(x)-2C(x)}{x^3}+\frac{2}{x}\frac{C(x)}{x^2}=\frac{1}{x^2} 

Сокращаем подобные и прочее, получаем:

\frac{C'(x)}{x^2}=\frac{1}{x^2} \\ C'(x)=1 \\ C(x)=x 

Подставляем получившееся значение C(x) в выражение   y=\frac{C}{x^2}  и получаем частное решение y=\frac{1}{x} 

В итоге общее решение неоднородного уравнения это сумма общего решения однородного уравнения и частного решения неоднородного уравнения. Т.е.

Y=\frac{C}{x^2}+\frac{1}{x} 

Все, уравнение решено. Теперь решаем задачу Коши:

Т.к. y_0=1\\x_0=3 

то приходим к уравнению 1=\frac{C}{9}+\frac{1}{3}\\ \frac{C}{9}=\frac{2}{3}\\ C=6 

Все, нашли С, теперь пишем решение задачи Коши:

Y_0=\frac{6}{x^2}+\frac{1}{x} 

ответ: Общее решение дифференциального уравнения:

  Y=\frac{C}{x^2}+\frac{1}{x} 

Частное решение дифференциального уравнения, удовлетворяющиего начальному условию y_0=1, x_0=3 :

  Y_0=\frac{6}{x^2}+\frac{1}{x} 

 

 

 

 

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота