Доказать можно методом математической индукции... только есть нюанс -числа целые (а не натуральные))) 1) для четного целого n утверждение очевидно: n = 2k, k∈Z (2k)² - 5(2k) + 2 = 2*(2k² - 5k + 1) 2) для НЕчетного целого n: n = 2k+1, k∈Z (2k+1)² - 5(2k+1) + 2 = 4k² + 4k + 1 - 10k - 5 + 2 = 2*(2k² - 3k - 1)
для чисел, кратных трем, будет на один вариант больше представлений: n = 3k (число кратно трем) n = 3k+1 (число НЕ кратно трем --дает остаток 1) n = 3k+2 (число НЕ кратно трем --дает остаток 2) 1) (3k)³ + 2(3k) - 3 = 3*(9k³ + 2k - 1) 2) (3k+1)³ + 2(3k+1) - 3 = 27k³ + 27k² + 9k + 1 + 6k + 2 - 3 = = 3*(9k³ + 9k² + 3k) 3) (3k+2)³ + 2(3k+2) - 3 = 27k³ + 54k² + 36k + 8 + 6k + 4 - 3 = = 3*(9k³ + 18k² + 14k + 3)
можно было доказывать и в первом и во втором случае кратность только для первых двух слагаемых, т.к. третьи слагаемые в обоих случаях кратны заданным числам... чуть короче бы получилось...
Двухзначное число больше удвоенного произведения его цифр на 5, а от удвоенной суммы цифр - на 3. Найдите эти число.
Решение.
Пусть x - цифра десятков данного числа;
y - цифра единиц этого числа
тогда
(10x+у) - данное двухзначное число.
ОДЗ: х∈N; 1≤x≤9;
y∈N; 0≤y≤9
По условию 10х+у > 2·(x·y) на 5.
Получаем первое уравнение:
10x+у - 2xy = 5
И ещё по условию 10х+у > 2·(x+y) на 3.
Получаем второе уравнение:
10x+у - 2·(x+y) = 3
Упростим его:
10x+у-2x-2y = 3
8х - у = 3
Решаем систему:
∉N
y=8x-3 при x=1
y=8·1-3
y=5
1- цифра десятков данного числа;
5 - цифра единиц этого числа
ответ: 15.
только есть нюанс -числа целые (а не натуральные)))
1) для четного целого n утверждение очевидно:
n = 2k, k∈Z (2k)² - 5(2k) + 2 = 2*(2k² - 5k + 1)
2) для НЕчетного целого n:
n = 2k+1, k∈Z
(2k+1)² - 5(2k+1) + 2 = 4k² + 4k + 1 - 10k - 5 + 2 = 2*(2k² - 3k - 1)
для чисел, кратных трем, будет на один вариант больше представлений:
n = 3k (число кратно трем)
n = 3k+1 (число НЕ кратно трем --дает остаток 1)
n = 3k+2 (число НЕ кратно трем --дает остаток 2)
1) (3k)³ + 2(3k) - 3 = 3*(9k³ + 2k - 1)
2) (3k+1)³ + 2(3k+1) - 3 = 27k³ + 27k² + 9k + 1 + 6k + 2 - 3 =
= 3*(9k³ + 9k² + 3k)
3) (3k+2)³ + 2(3k+2) - 3 = 27k³ + 54k² + 36k + 8 + 6k + 4 - 3 =
= 3*(9k³ + 18k² + 14k + 3)
можно было доказывать и в первом и во втором случае кратность только для первых двух слагаемых, т.к. третьи слагаемые в обоих случаях кратны заданным числам... чуть короче бы получилось...