s v t
по течению 16км х+2 на 40мин.=(2/3)ч. м.
против теч. 16км х-2
течен. 2км/ч
собств. ?х
Собственная скорость х (км/ч), х- величина положительная, остальное в табл. детально расписано. Согласно условия уравнение.
16/(х-2)-16/(х+2)=2/3
16*3*(х+2-х+2)=2*(х²-4)
х²-4=16*3*2; х²=100, х=±10, х=10∅, значит, собственная скорость лодки равна 10 км/ч.
ответ 10 км/ч
1) x² + 2x - 8 = (x - 2)(x + 4)
Для условия x² + 2 - 8:
x² + 2 - 8 = x² - 6 = (x - √6)(x + √6)
2) 3x₂ - 11x + 8 = (x - 1)(3x - 8)
Объяснение:
1) а) x² + 2x - 8
Найдем корни квадратного трехчлена по т.Виета: сумма корней приведённого квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену.
x₁ + x₂ = -2; x₁*x₂ = -8
⇒ корни данного квадратного трехчлена x₁ = -4; x₂ = 2
Разложим выражение на множители:
x² + 2x - 8 = (x - 2)(x + 4)
б) x² + 2 - 8
Упростим выражение и найдем его корни:
x² + 2 - 8 = x² - 6
x₁ = √6; x₂ = -√6
Тогда x² + 2 - 8 = x² - 6 = (x - √6)(x + √6)
2) 3x² - 11x + 8
Найдем корни квадратного трехчлена с дискриминанта:
D = b² - 4ac = 11² - 4*3*8 = 121 - 96 = 25 = 5²
Разложим квадратный трехчлен на множители:
(Множитель 3 внесли во вторую скобку или вторую скобку умножили на 3).
s v t
по течению 16км х+2 на 40мин.=(2/3)ч. м.
против теч. 16км х-2
течен. 2км/ч
собств. ?х
Собственная скорость х (км/ч), х- величина положительная, остальное в табл. детально расписано. Согласно условия уравнение.
16/(х-2)-16/(х+2)=2/3
16*3*(х+2-х+2)=2*(х²-4)
х²-4=16*3*2; х²=100, х=±10, х=10∅, значит, собственная скорость лодки равна 10 км/ч.
ответ 10 км/ч
1) x² + 2x - 8 = (x - 2)(x + 4)
Для условия x² + 2 - 8:
x² + 2 - 8 = x² - 6 = (x - √6)(x + √6)
2) 3x₂ - 11x + 8 = (x - 1)(3x - 8)
Объяснение:
1) а) x² + 2x - 8
Найдем корни квадратного трехчлена по т.Виета: сумма корней приведённого квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену.
x₁ + x₂ = -2; x₁*x₂ = -8
⇒ корни данного квадратного трехчлена x₁ = -4; x₂ = 2
Разложим выражение на множители:
x² + 2x - 8 = (x - 2)(x + 4)
б) x² + 2 - 8
Упростим выражение и найдем его корни:
x² + 2 - 8 = x² - 6
x₁ = √6; x₂ = -√6
Тогда x² + 2 - 8 = x² - 6 = (x - √6)(x + √6)
2) 3x² - 11x + 8
Найдем корни квадратного трехчлена с дискриминанта:
D = b² - 4ac = 11² - 4*3*8 = 121 - 96 = 25 = 5²
Разложим квадратный трехчлен на множители:
(Множитель 3 внесли во вторую скобку или вторую скобку умножили на 3).