Свойства сложения:
1. Переместительное (коммутативное) свойство сложения: от перемены мест слагаемых сумма не меняется
Запись в общем виде с букв: a + b = b +a
Это свойство позволяет менять местами слагаемые
Пример: 12 + 5 = 5 + 12
2. Сочетательное (ассоциативное) свойство сложения: от изменения расстановки скобок сумма не меняется:
Запись в общем виде с букв: (а + b) + с = a + (b + с)
Применяя сочетательное свойство, мы можем изменять порядок действий так, чтобы выполнить их более удобным
Пример: (23 + 11) + 89 = 23 + (11 + 89) = 23 + 100 = 123
3. Свойство нуля при сложении: если к числу прибавить нуль, получится само число.:
Запись в общем виде с букв а + 0 = а
Пример: 5 + 0 = 5
Свойства умножения
1. Переместительное (коммутативное) - от перемены мест множителей произведение не меняется.
Запись в общем виде с букв a · b = b ·a
Переместительное свойство умножения позволяет менять местами множители
Примеры: 12 · 5 = 5 · 12
2. Сочетательное (ассоциативное) свойство: от изменения расстановки скобок произведение не меняется
Запись в общем виде с букв (а· b) · с = a· (b · с)
Пример: (12 · 4) · 25 = 12 ·(4 · 25) = 12 · 100 = 1200
3. Распределительное свойство умножения относительно сложения: Чтобы умножить число на сумму двух чисел, надо это число умножить на каждое слагаемое и полученные результаты сложить.
Запись в общем виде с букв: a · (b + c) = a · b + a · c
Пример: 4 · (25 + 60) = 4 · 25 + 4 · 60 = 100 + 240 = 340
4. Свойство нуля при умножении: если число умножить на ноль, то получится ноль
Запись в общем виде с букв а · 0 = 0
Пример: 5 · 0 = 0
5. Свойство единицы при умножении: если число умножить на единицу, то получится само число
Запись в общем виде с букв: а · 1 = а
Пример: 5 · 1 = 5
x²- 8x + 67 < 0
y(x) = x² - 8x + 67 - это квадратичная функция; у которой ветви направлены вверх, так как коэффициент перед х² равен 1, то есть он больше нуля.
Сначала решим квадратное уравнение:
x²- 8x + 67 = 0
Д = 64 - 4·67 = - 204 < 0 корней нет
Если Дискриминант меньше нуля, то данная парабола вся полностью лежит выше оси ОХ, и она не будет пересекать эту ось ОХ .
Поэтому, все значения функции будут только положительными.
Следовательно, x²- 8x + 67 < 0 не имеет решений.
Свойства сложения:
1. Переместительное (коммутативное) свойство сложения: от перемены мест слагаемых сумма не меняется
Запись в общем виде с букв: a + b = b +a
Это свойство позволяет менять местами слагаемые
Пример: 12 + 5 = 5 + 12
2. Сочетательное (ассоциативное) свойство сложения: от изменения расстановки скобок сумма не меняется:
Запись в общем виде с букв: (а + b) + с = a + (b + с)
Применяя сочетательное свойство, мы можем изменять порядок действий так, чтобы выполнить их более удобным
Пример: (23 + 11) + 89 = 23 + (11 + 89) = 23 + 100 = 123
3. Свойство нуля при сложении: если к числу прибавить нуль, получится само число.:
Запись в общем виде с букв а + 0 = а
Пример: 5 + 0 = 5
Свойства умножения
1. Переместительное (коммутативное) - от перемены мест множителей произведение не меняется.
Запись в общем виде с букв a · b = b ·a
Переместительное свойство умножения позволяет менять местами множители
Примеры: 12 · 5 = 5 · 12
2. Сочетательное (ассоциативное) свойство: от изменения расстановки скобок произведение не меняется
Запись в общем виде с букв (а· b) · с = a· (b · с)
Пример: (12 · 4) · 25 = 12 ·(4 · 25) = 12 · 100 = 1200
3. Распределительное свойство умножения относительно сложения: Чтобы умножить число на сумму двух чисел, надо это число умножить на каждое слагаемое и полученные результаты сложить.
Запись в общем виде с букв: a · (b + c) = a · b + a · c
Пример: 4 · (25 + 60) = 4 · 25 + 4 · 60 = 100 + 240 = 340
4. Свойство нуля при умножении: если число умножить на ноль, то получится ноль
Запись в общем виде с букв а · 0 = 0
Пример: 5 · 0 = 0
5. Свойство единицы при умножении: если число умножить на единицу, то получится само число
Запись в общем виде с букв: а · 1 = а
Пример: 5 · 1 = 5