0 " class="latex-formula" id="TexFormula4" src="https://tex.z-dn.net/?f=f%27%28x%29%3E0%20" title="f'(x)>0 "> при x∈(-≈;)U(;+≈) Следовательно, функция возрастает на промежутке от минус бесконечности до достигая в этой точке локального максимума, затем убывает до локального минимума в точке , затем снова возрастает. => Следовательно функция является выпуклой на интервале от минус бесконечности до 0, и вогнутой, соответственно, от 0 до плюс бесконечности График выглядит, примерно, так.Посчитай пять точек для подгонки к координатам: x∈{-2;-1;0;1;2}
Вот решение 1 задачи: 9486 = 0Б2К - две цифры стоят не на своих местах. 1279 = 1Б2К - одна цифра на своем месте и две не на своих. Цифр 0 и 5 нет вообще, так как мы за 2 хода угадали 5 цифр из 4. Повторилась 9, значит, она и попала на свое место - последнее. 8512 = 0Б2К - две цифры стоят не на своих местах. 9761 = 1Б1К - одна цифра на своем месте и одна не на своем. Мы уже знаем, что не на своем месте 9, значит, на своем 1, 6 или 7.
Рассмотрим ходы 1279 и 9761. 1) В ходе 9761 цифра 1 не может стоять на своем месте, потому что мы уже знаем, что последняя цифра - 9.
2) Если в 9761 на своем месте стоит 6, то 1 и 7 нет, тогда число 1279 имело бы две цифры, а не три. Получили противоречие.
3) Значит, в 9761 на своем месте стоит 7, это единственный вариант. Тогда цифр 1 и 6 нет, а 2 есть, и стоит она не на 2 месте. Тогда 2 может стоять на 1 или на 3 месте. Теперь рассмотрим ход 8512. Цифр 1 и 5 нет, значит, 8 и 2 есть. Значит, в ходе 9486 цифра 8 стоит не на своем месте. Мы знаем, что на 2 месте стоит 7, а на 4 месте 9, значит 8 на 1 месте. ответ: 8729
Примерно такими же рассуждениями можно решить 2 и 3 задачи. Я дам только ответы. 2. 1706 3. 2637 Впрочем, в 3 задаче я не уверен, кажется, там ход пропущен. В числе 2106 цифра 6 есть, а 0 нет, а вот вторая цифра - 1 или 2. Остается непонятно. Я дал ответ 2637, исходя из того, что 2 - бык, то есть стоит на своем месте. Но может оказаться, что бык - 6. Тогда ответ вообще не определен.
=>
Интервалы знакопостоянства разделены найденными корнями: - + - +
Функция нечётная
0 " class="latex-formula" id="TexFormula4" src="https://tex.z-dn.net/?f=f%27%28x%29%3E0%20" title="f'(x)>0 "> при x∈(-≈;)U(;+≈)
Следовательно, функция возрастает на промежутке от минус бесконечности до достигая в этой точке локального максимума, затем убывает до локального минимума в точке , затем снова возрастает.
=>
Следовательно функция является выпуклой на интервале от минус бесконечности до 0, и вогнутой, соответственно, от 0 до плюс бесконечности
График выглядит, примерно, так.Посчитай пять точек для подгонки к координатам: x∈{-2;-1;0;1;2}
9486 = 0Б2К - две цифры стоят не на своих местах.
1279 = 1Б2К - одна цифра на своем месте и две не на своих.
Цифр 0 и 5 нет вообще, так как мы за 2 хода угадали 5 цифр из 4.
Повторилась 9, значит, она и попала на свое место - последнее.
8512 = 0Б2К - две цифры стоят не на своих местах.
9761 = 1Б1К - одна цифра на своем месте и одна не на своем.
Мы уже знаем, что не на своем месте 9, значит, на своем 1, 6 или 7.
Рассмотрим ходы 1279 и 9761.
1) В ходе 9761 цифра 1 не может стоять на своем месте,
потому что мы уже знаем, что последняя цифра - 9.
2) Если в 9761 на своем месте стоит 6, то 1 и 7 нет, тогда число 1279 имело бы две цифры, а не три. Получили противоречие.
3) Значит, в 9761 на своем месте стоит 7, это единственный вариант.
Тогда цифр 1 и 6 нет, а 2 есть, и стоит она не на 2 месте.
Тогда 2 может стоять на 1 или на 3 месте.
Теперь рассмотрим ход 8512. Цифр 1 и 5 нет, значит, 8 и 2 есть.
Значит, в ходе 9486 цифра 8 стоит не на своем месте.
Мы знаем, что на 2 месте стоит 7, а на 4 месте 9, значит 8 на 1 месте.
ответ: 8729
Примерно такими же рассуждениями можно решить 2 и 3 задачи.
Я дам только ответы.
2. 1706
3. 2637
Впрочем, в 3 задаче я не уверен, кажется, там ход пропущен.
В числе 2106 цифра 6 есть, а 0 нет, а вот вторая цифра - 1 или 2.
Остается непонятно. Я дал ответ 2637, исходя из того, что 2 - бык,
то есть стоит на своем месте. Но может оказаться, что бык - 6.
Тогда ответ вообще не определен.