боковая сторона равнобедренного треугольника равна 12 см а угол при вершине а равен 120 градусов. Найдите расстояние от вершины треугольника до прямой содержащей основание
Задание: разложить на множители. множители - компоненты при умножении ⇒выражение представляет собой произведение многочленов. преобразовать данное выражение так, чтобы в каждом слагаемом были одинаковые множители. 1. m-n+p(m-n). 3-е слагаемое состоит из двух множителей р и (m-n), значит первое и второе слагаемое группируем и записываем (m-n). необходимо представить в виде произведения двух множителей. один множитель (m-n), второй множитель в этом слагаемом может быть только 1. получаем: m-n+p(m-n)=(m-n)*1+p*(m-n)=(m-n)*(1-p)
множители - компоненты при умножении ⇒выражение представляет собой произведение многочленов.
преобразовать данное выражение так, чтобы в каждом слагаемом были одинаковые множители.
1. m-n+p(m-n). 3-е слагаемое состоит из двух множителей р и (m-n), значит первое и второе слагаемое группируем и записываем (m-n). необходимо представить в виде произведения двух множителей. один множитель (m-n), второй множитель в этом слагаемом может быть только 1. получаем:
m-n+p(m-n)=(m-n)*1+p*(m-n)=(m-n)*(1-p)
4q(p-1)+p-1=4q*(p-1)+(p-1)*1=(p-1)*(4q+1)
4q(p-1)+1-p=4q*(p-1)-1*(p-1)=(p-1)*(4q-1)
Объяснение:
Чтобы упростить выражение ((x + y)/(x - y) - (x - y)/(x + y)) : xy/(x^2 - y^2) выполним сначала действие в скобках.
Приведем дроби к общему знаменателю. Для этого домножим первую дробь на (х + у), а вторую на (х - у):
(x + y)/(x - y) - (x - y)/(x + y) = ((х + y)^2 - (x - y)^2))/(x^2 - y^2) = (x^2 + 2xy + y^2 - x^2 + 2xy - y^2)/(x^2 - y^2) = 4xy/(x^2 - y^2).
Теперь выполним деление дробей. Как известно при деление дроби на дробь действие деление заменяется умножением и вторая дробь переворачивается.
4xy/(x^2 - y^2) * (x^2 - y^2)/xy = 4.