В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
enrnud6
enrnud6
09.01.2022 00:20 •  Алгебра

дам 20б.
Решить уравнение используя снижения порядка
x(y''+1)+y'=0

Показать ответ
Ответ:
LONNI34
LONNI34
11.10.2020 20:45

Понизим порядок с замены y'=u, тогда y''=u'

x(u'+1)+u=0\\ \\ u'x+u=-x\\ \\ (u\cdot x)'=-x\\ \\ \displaystyle ux=\int -xdx~~~\Rightarrow~~~ ux=-\dfrac{x^2}{2}+C_1\\ \\ u=\dfrac{-x}{2}+\dfrac{C_1}{x}

Выполним обратную замену

y'=-\dfrac{x}{2}+\dfrac{C_1}{x}\\ \\ \displaystyle y=\int \left(-\dfrac{x}{2}+\dfrac{C_1}{x}\right)dx\\ \\ \\ \boxed{y=-\dfrac{x^2}{4}+C_1\ln |x|+C_2}

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота