1. нет; 2. 1) общего вида 2) общего вида 3) общего вида 3. 1) -1; 3 2) 1; -3 4) -1
Объяснение:
1. Если функция нечетная то произведение f(3)f(-3) не будет положительным.
2.
1)
Это функция общего вида
2)
Это функция общего вида
3)
Это функция общего вида
3.
1)
Значит
2)
Значит
4.
Это биквадратное уравнение. Делаем подстановку
Уравнение будет иметь один корень, когда дискриминант равен 0
Но, поскольку х=±√у, то при любом положительном у мы получим два различных значения х. Одно значение х мы получим лишь в случае у=0. Тогда х=√0=0. Следовательно
Делаем проверку:
1) а=-1
Имеется одно решение (т.к выражение в скобках никогда не будет равно 0)
2) а=3
Здесь появляется второй корень. Значит, это значение не подходит.
Данное выражение должно делиться на 10^7 = 2^7 * 5^7, то есть кратным 2^7 и 5^7 a должно быть чётным Пусть а=2n a(a+8)(a+16)(a+24)(a+32)=2n(2n+8)(2n+16)(2n+24)(2n+32)= =2^5(n+4)(n+8)(n+12)(n+16) > не кратно 2^7, a=2n не подходит. Пусть а=4n 4n(4n+8)(4n+16)(4n+24)(4n+32) = 2^10 *(n+2)(n+4)(n+6)(n+8) - кратно 2^7
произведение (n+2)(n+4)(n+6)(n+8) должно быть кратно 5^7, все сомножители дают разные остатки от деления на 5, поэтому среди них только один должен делиться на 5^7. наименьшее n - в множителе (n+8) ---> n=5^7 -8=78125-8=78117
1. нет; 2. 1) общего вида 2) общего вида 3) общего вида 3. 1) -1; 3 2) 1; -3 4) -1
Объяснение:
1. Если функция нечетная то произведение f(3)f(-3) не будет положительным.
2.
1)
Это функция общего вида
2)
Это функция общего вида
3)
Это функция общего вида
3.
1)
Значит
2)
Значит
4.
Это биквадратное уравнение. Делаем подстановку
Уравнение будет иметь один корень, когда дискриминант равен 0
Но, поскольку х=±√у, то при любом положительном у мы получим два различных значения х. Одно значение х мы получим лишь в случае у=0. Тогда х=√0=0. Следовательно
Делаем проверку:
1) а=-1
Имеется одно решение (т.к выражение в скобках никогда не будет равно 0)
2) а=3
Здесь появляется второй корень. Значит, это значение не подходит.
Окончательно получаем решение: а=-1
a должно быть чётным
Пусть а=2n
a(a+8)(a+16)(a+24)(a+32)=2n(2n+8)(2n+16)(2n+24)(2n+32)=
=2^5(n+4)(n+8)(n+12)(n+16) > не кратно 2^7, a=2n не подходит.
Пусть а=4n
4n(4n+8)(4n+16)(4n+24)(4n+32) = 2^10 *(n+2)(n+4)(n+6)(n+8) - кратно 2^7
произведение (n+2)(n+4)(n+6)(n+8) должно быть кратно 5^7, все сомножители дают разные остатки от деления на 5, поэтому среди них только один должен делиться на 5^7.
наименьшее n - в множителе (n+8) ---> n=5^7 -8=78125-8=78117
a=4*78117=312468