В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
lisss2005
lisss2005
18.01.2021 00:09 •  Алгебра

Дана функция g(x) =-13x +65. при каких значениях аргумента g (x) =0, g(x)< 0, g(x)> 0? является ли эта функция возрастающей или убивающей?

Показать ответ
Ответ:
Электрик2016
Электрик2016
09.07.2020 20:53
Пусть дана функция: g(x)=-13x+65. Найдем значение x, при котором функция будет равна 0. Для этого приравняем саму функцию к  0:
-13x+65=0
x=5.
Итак, при 5 данная функция перескает ось абсцисс (OX). Так как у функции угловой коэффициент отрицательный (число -13), следует заключение, что функция убывает на всей области определения. Так как это линейная функция, то область определения у неё, вся числовая прямая. Отсюда следует, что функия - убывающая!

Теперь найдем, когда функция положительна и когда отрицательна. Здесь все просто, необходимо рассмотреть значение функции, относительно координаты 5. Так как функция убывает, то отсюда получаем:
g(x)0 при x<5
g(x)<0 при x5.

ответ:
g(x)=0 при x=5
g(x)0 при x<5
g(x)<0 при x5
g(x) - убывающая
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота