Бино́м Нью́то́на — формула для разложения на отдельные слагаемые целой неотрицательной степени суммы двух переменных, имеющая вид
( a + b ) n = ∑ k = 0 n ( n k ) a n − k b k = ( n 0 ) a n + ( n 1 ) a n − 1 b + ⋯ + ( n k ) a n − k b k + ⋯ + ( n n ) b n (a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n - k} b^k = {n\choose 0}a^n + {n\choose 1}a^{n - 1}b + \dots + {n\choose k}a^{n - k}b^k + \dots + {n\choose n}b^n где ( n k ) = n ! k ! ( n − k ) ! = C n k {n\choose k}=\frac{n!}{k!(n - k)!}= C_n^k — биномиальные коэффициенты, n n — неотрицательное целое число.
В таком виде эта формула была известна ещё индийским и персидским математикам; Ньютон вывел формулу бинома Ньютона для более общего случая, когда показатель степени — произвольное действительное (или даже комплексное) число.
свободный член отвечает за подъем/спуск параболы вдоль Oy.
По теореме Виета для уравнения (решая относительно x)
Из первого уравнения видно, что корни уравнения либо оба положительные, либо один положителен, второй отрицателен. Теперь подробнее разберем второе уравнение. Если оба корня положительны, то их произведение тоже положительно. Докажем, что не может принимать отрицательных значений.
Рассмотрим функцию
это парабола с ветвями вверх. Найдем ее ординату ее вершины
значит -4 - минимальное значение функции и при любом a.
Раз оба корня могут быть только положительными, то модуль их разности будет максимален, если они будут как можно дальше друг от друга на оси Ох, т.е. вершина параболы должна быть как можно ниже. Это означает, что свободный член c должен иметь минимальное значение, а это возможно при
(
a
+
b
)
n
=
∑
k
=
0
n
(
n
k
)
a
n
−
k
b
k
=
(
n
0
)
a
n
+
(
n
1
)
a
n
−
1
b
+
⋯
+
(
n
k
)
a
n
−
k
b
k
+
⋯
+
(
n
n
)
b
n
(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n - k} b^k = {n\choose 0}a^n + {n\choose 1}a^{n - 1}b + \dots + {n\choose k}a^{n - k}b^k + \dots + {n\choose n}b^n
где
(
n
k
)
=
n
!
k
!
(
n
−
k
)
!
=
C
n
k
{n\choose k}=\frac{n!}{k!(n - k)!}= C_n^k — биномиальные коэффициенты,
n
n — неотрицательное целое число.
В таком виде эта формула была известна ещё индийским и персидским математикам; Ньютон вывел формулу бинома Ньютона для более общего случая, когда показатель степени — произвольное действительное (или даже комплексное) число.
свободный член отвечает за подъем/спуск параболы вдоль Oy.
По теореме Виета для уравнения (решая относительно x)
Из первого уравнения видно, что корни уравнения либо оба положительные, либо один положителен, второй отрицателен. Теперь подробнее разберем второе уравнение. Если оба корня положительны, то их произведение тоже положительно. Докажем, что не может принимать отрицательных значений.
Рассмотрим функцию
это парабола с ветвями вверх. Найдем ее ординату ее вершины
значит -4 - минимальное значение функции и при любом a.
Раз оба корня могут быть только положительными, то модуль их разности будет максимален, если они будут как можно дальше друг от друга на оси Ох, т.е. вершина параболы должна быть как можно ниже. Это означает, что свободный член c должен иметь минимальное значение, а это возможно при
ответ: a=2