Для каждой команды по всем конкурсам суммируются. Победителем считается команда, набравшая в сумме наибольшее количество . Сколько в сумме у команды- победителя?
1. A) Выразим х из первого уравнения системы и подставим во второе: х=3+у 3(3+у)+у=5 9+3у+у=5 4у=-4 у=-1 Подставим найденное значение у в выраженное нами значение х: х=3+у=3+(-1)=3-1=2
Проверим верность вычислений: 2-(-1)=2+1=3 - верно. 3*2+(-1)=6-1=5 - верно. х=2, у=-1. Б) Выразим у из первого уравнения системы и подставим во второе: у=4-х² 2*(4-х²)-х=7 8-2х²-х=7 2х²+х-1=0 Д=1+8=9 х1=(-1+3):4=1/2 х2=(-1-3):4=-1 у=4-х² При х1=1/2, у1=4-1/4=3 целых 3/4 При х2=-1, у2=4-(-1)²=4-1=3
х1=1/2, у1=3 целых 3/4; х2=-1, у2=3.
2.Подставим нашу точку (4;-2) в данные уравнения. Если в обоих уравнениях получится тождество, то эта пара чисел является решением системы, в противном случае-нет. На первом месте всегда стоит х, а на втором - у (если не оговорено в условиях другое). Подставляем: 4+(-2)=2 4-2=2 2=2 - верно
4=-2, но 4≠-2. Второе условие не соответствует - пара чисел (4;-2) - не является решением для данной системы уравнений.
{3x+4y=55 7x-y=56. подстановки из 7x-y=56 выведем у. у=7х-56. и подставим в 1- уравнение. 3х+4(7х-56)=55 3х+28х-224=55 31х=279 х=279:31. х=9 у=7·9-56=63-56=7 ответ:(9;7) сложения. {3x+4y=55 7x-y=56. для того чтобы избавиться от у умножим 2- уравнение на 4 3х+4у=55 28х-4у=224. сложим оба уравнения. 31х=279. х=9 у=7·9-56=63-56=7 ответ: (9;7) 3) графический из двух уравнении выведем у у1= (55-3х)/4 у2=7х-56 составим таблицу для у1= (55-3х)/4 х=5; у1=55-15/4=10 х=9; у1=55-27/4=7. для у2=7х-56 х=8 ; у2=7·8-56=0 х=9; у=7·9-56=7 данные обеих функции отметим на координатной плоскости , графики этих функции прямые, которые пересекутся в точке(9;7). есть подстановки, когда подбирают значения.
х=3+у
3(3+у)+у=5
9+3у+у=5
4у=-4
у=-1
Подставим найденное значение у в выраженное нами значение х:
х=3+у=3+(-1)=3-1=2
Проверим верность вычислений: 2-(-1)=2+1=3 - верно.
3*2+(-1)=6-1=5 - верно.
х=2, у=-1.
Б) Выразим у из первого уравнения системы и подставим во второе:
у=4-х²
2*(4-х²)-х=7
8-2х²-х=7
2х²+х-1=0
Д=1+8=9
х1=(-1+3):4=1/2
х2=(-1-3):4=-1
у=4-х²
При х1=1/2, у1=4-1/4=3 целых 3/4
При х2=-1, у2=4-(-1)²=4-1=3
х1=1/2, у1=3 целых 3/4; х2=-1, у2=3.
2.Подставим нашу точку (4;-2) в данные уравнения. Если в обоих уравнениях получится тождество, то эта пара чисел является решением системы, в противном случае-нет. На первом месте всегда стоит х, а на втором - у (если не оговорено в условиях другое).
Подставляем:
4+(-2)=2
4-2=2
2=2 - верно
4=-2, но 4≠-2. Второе условие не соответствует - пара чисел (4;-2) - не является решением для данной системы уравнений.
7x-y=56.
подстановки
из 7x-y=56 выведем у.
у=7х-56. и подставим в 1- уравнение.
3х+4(7х-56)=55
3х+28х-224=55
31х=279
х=279:31. х=9
у=7·9-56=63-56=7
ответ:(9;7)
сложения.
{3x+4y=55
7x-y=56. для того чтобы избавиться от у умножим 2- уравнение на 4
3х+4у=55
28х-4у=224. сложим оба уравнения.
31х=279. х=9
у=7·9-56=63-56=7
ответ: (9;7)
3) графический
из двух уравнении выведем у
у1= (55-3х)/4
у2=7х-56
составим таблицу для у1= (55-3х)/4
х=5; у1=55-15/4=10
х=9; у1=55-27/4=7.
для у2=7х-56
х=8 ; у2=7·8-56=0
х=9; у=7·9-56=7
данные обеих функции отметим на координатной плоскости , графики этих функции прямые, которые пересекутся в точке(9;7).
есть подстановки, когда подбирают значения.