1.Пусть производительность второй трубы будет 1/х, а производительность первой трубы - 1/у. Тогда по условию разность в 4 часа описывается уравнением:
2. Наполнение бассейна происходило в течение 7+2=9 часов, причём сначала одной первой, затем двумя трубами. Это описывается уравнением:
3. Если объединить полученные два уравнения в систему, то получится, что:
Отсюда получается один ответ (производительность только положительная): х=1/5, а у=1/9. 4. Зная производительности, находим, что для первой трубы время равно: 1:(1/9)=9 часов.
1)1. Выразить у через х(или наоборот) из одного уравнения системы. 2. Подставить полученное выражение вместо у(х) в другое уравнение системы. 3. Решить полученное уравнение относительно х(у). 4. Подставить поочередно каждый из найденных на третьем шаге корней уравнения вместо х(у) в выражение у(х) через х(у), полученное на первом шаге. 5. Записать ответ в виде пар значений (х; у), которые были найдены соответственно на третьем и четвертом шаге.
2)Привести два уравнения системы к одинаковым по модулю коэффициентам при переменной х или при переменной у.
Если коэффициенты одинаковые, то из одного уравнения вычесть другое. Если же коэффициенты противоположные по значению, то уравнения системы складываются. Решить полученное уравнение относительно одной переменной и найти значение одной из переменных системы
. Выразить из одного из уравнений системы неизвестную переменную.
Подставить известное значение и найти значение второй переменной.
2. Наполнение бассейна происходило в течение 7+2=9 часов, причём сначала одной первой, затем двумя трубами. Это описывается уравнением:
3. Если объединить полученные два уравнения в систему, то получится, что:
Отсюда получается один ответ (производительность только положительная): х=1/5, а у=1/9.
4. Зная производительности, находим, что для первой трубы время равно: 1:(1/9)=9 часов.
1)1. Выразить у через х(или наоборот) из одного уравнения системы.
2. Подставить полученное выражение вместо у(х) в другое уравнение системы.
3. Решить полученное уравнение относительно х(у).
4. Подставить поочередно каждый из найденных на третьем шаге корней уравнения вместо х(у) в выражение у(х) через х(у), полученное на первом шаге.
5. Записать ответ в виде пар значений (х; у), которые были найдены соответственно на третьем и четвертом шаге.
2)Привести два уравнения системы к одинаковым по модулю коэффициентам при переменной х или при переменной у.
Если коэффициенты одинаковые, то из одного уравнения вычесть другое. Если же коэффициенты противоположные по значению, то уравнения системы складываются.
Решить полученное уравнение относительно одной переменной и найти значение одной из переменных системы
.
Выразить из одного из уравнений системы неизвестную переменную.
Подставить известное значение и найти значение второй переменной.
Записать ответ.