В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Maksim2553
Maksim2553
18.10.2020 06:31 •  Алгебра

ЭТО СОЧ! Найти значение коэффициента к, если известно, что
к, если известно, что график функции y=
проходит через точку с координатами (-2; 8)​

Показать ответ
Ответ:
diyoyoroo
diyoyoroo
16.01.2023 06:19
Пусть мы бросили кубик первый раз и выпало некое число от 1 до 6. Когда мы будем бросать кубик второй раз, то из 6 вариантов только в одном случае выпадет точно такое число очков, и в 5 случаях - отличное от первого. Отсюда, вероятность выпадения разного количества очков равно:

\frac{5}{6} \approx 0,83

Можно по-другому.
Всего различных вариантов выпадения очков при двух бросках кубика равно 6 × 6 = 36.
Подсчитаем число случаев, когда выпадет одинаковое количество очков: 1 и 1, 2 и 2, 3 и 3, 4 и 4, 5 и 5, 6 и 6 - всего 6 вариантов. Значит, вариантов различного числа очков на кубике после двух бросков равно 36 - 6 = 30. Считаем вероятность:

\frac{30}{36} \approx 0,83
0,0(0 оценок)
Ответ:
Влад1488228
Влад1488228
18.07.2020 09:12
a^2x- 2a^2=49x+14a
\\\
a^2x-49x=2a^2+14a
\\\
(a^2-49)x=2a(a+7)
\\\
(a-7)(a+7)x=2a(a+7)
Рассмотрим три случая:
1) При а=7 получим:
(7-7)\cdot (7+7)\cdot x=2\cdot7\cdot(7+7)
\\\
0\cdot 14\cdot x=14\cdot14
\\\
0\cdot x=196
Получившееся уравнение не имеет решений.
2) При а=-7 получим:
(-7-7)\cdot (-7+7)\cdot x=2\cdot(-7)\cdot(-7+7) \\\ 
-14\cdot 0\cdot x=-14\cdot0 \\\ 0\cdot x=0
Получившееся уравнение имеет бесконечное множество корней.
3) Если а≠7 и а≠-7, то разделим левую и правую часть уравнения на (а+7)(а-7)
\dfrac{(a-7)(a+7)}{(a-7)(a+7)} \cdot x= \dfrac{2a(a+7)}{(a-7)(a+7)} 
\\\
x= \dfrac{2a}{a-7}
Именно в этом случае уравнение будет иметь один корень.
ответ: a\in(-\infty;-7)\cup(-7;7)\cup(7;+\infty)

x^2-(a^2-17a+83)x-21=0
Прежде чем рассматривать сумму корней докажем, что уравнение всегда будет иметь корни. Находим дискриминант:
D=(a^2-17a+83)^2-4\cdot1\cdot(-21)=(a^2-17a+83)^2+84
Сумма неотрицательного числа (квадрат) и положительного числа есть число положительное, значит дискриминант положительный и уравнение имеет два корня при любом значении а.
Сумма корней приведенного квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком:
x_1+x_2=a^2-17a+83
Выражение f(a)=a^2-17a+83 представляет собой квадратичную функцию, графиком которой является парабола ветвями вверх. Наименьшее значение такой функции достигается в вершине, которую вычислим по формуле:
a_{min}=-\frac{B}{2A} =-\frac{-17}{2\cdot1} =8.5
Иначе можно было найти ответ приравняв к нулю первую производную функции:
(a^2-17a+83)'=0
\\\
2a-17=0
\\\
a_{min}= \frac{17}{2} =8.5
ответ: 8,5
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота