Домножим числитель и знаменатель на такое число, что бы получить в знаменателе квадрат целого числа. Проще всего домножить на 7:
28/49 и 35/49
Но между 28 и 35 нету квадратов целых чисел, поэтому надо ещё домножить числитель и знаменатель каждого числа, но уже на квадрат какого-то целого числа, например, на 4 ,9, 16 и т.д. Попробуем умножить на 4:
112/196 и 140/196
Между числами 112 и 140 есть число 121, которое является квадратом числа 11. Поэтому искомое число 121/196 (так как оно будет квадратом числа 11/14).
Можно калькулятором себя проверить, действительно ли число 121/196 будет находится между 4/7 и 5/7:
Домножим числитель и знаменатель на такое число, что бы получить в знаменателе квадрат целого числа. Проще всего домножить на 7:
28/49 и 35/49
Но между 28 и 35 нету квадратов целых чисел, поэтому надо ещё домножить числитель и знаменатель каждого числа, но уже на квадрат какого-то целого числа, например, на 4 ,9, 16 и т.д. Попробуем умножить на 4:
112/196 и 140/196
Между числами 112 и 140 есть число 121, которое является квадратом числа 11. Поэтому искомое число 121/196 (так как оно будет квадратом числа 11/14).
Можно калькулятором себя проверить, действительно ли число 121/196 будет находится между 4/7 и 5/7:
4/7 = 0,5714...
121/196 = 0,6173...
5/7 = 0,7143...
1) Определим значение у, если х = 0,5.
у = 6х + 19 = 6 * 0,5 + 19 = 3 + 19 = 22.
Определим значение х, при у = 1.
1 = 6х + 19.
- 6х = 19 - 1.
- 6х = 18.
х = 18 : (- 6) = - 3.
Определим проходит ли график функции через точку А(-2,7).
у = 6 * (- 2) + 19 = 7.
х = - 2, у = 7.
2) Найдем координаты точки пересечения графиков функций у = 47х - 37 и у = - 13х + 23.
47х - 37 = - 13х + 23.
47х + 13х = 37 + 23.
60х = 60.
х = 60 : 60 = 1.
у = 47 * 1 - 37 = 10.
у = - 13 * 1 + 23 = - 13 + 23 = 10.
Точки пересечения (1; 10).
3) Зададим формулой у = 3х линейную функцию, график которой параллелен прямой у=3х-7 и проходит через начало координат.
Прямая через начало координат - y=kx.
Прямая параллельная y=3x-7 -> k=3
Общий вид линейной функции y=kx+b.
Решение должно проходить через точку (0,0) -> 0 = k * 0 + b и b = 0.
Две прямые параллельны, если их угловые коэффициенты (k) равны.
ответ: 1) у = 22, х = - 3, график функций у = 6х + 19 проходит через точку А(-2,7); 2) Точки пересечения (1; 10); 3) у = 3х.
Объяснение: