Пусть х (км/ч) - скорость лодки в стоячей воде, тогда х + 1 (км/ч) - скорость лодки по течению реки х - 1 (км/ч) - скорость лодки против течения реки
S = v * t - формула пути v = х + 1 + х - 1 = 2х (км/ч) - скорость сближения t = 1,9 (ч) - время в пути S = 98,8 (км) - расстояние между пристанями Подставим все значения в формулу и решим уравнение: 2х * 1,9 = 98,8 3,8х = 98,8 х = 98,8 : 3,8 х = 26 (км/ч) - скорость лодки в стоячей воде; (26 + 1) * 1,9 = 51,3 (км) - расстояние до места встречи, которое пройдёт лодка, плывущая по течению реки; (26 - 1) * 1,9 = 47,5 (км) - расстояние до места встречи, которое пройдёт лодка, плывущая против течения реки. ответ: 26 км/ч; 51,3 км; 47,5 км.
х + 1 (км/ч) - скорость лодки по течению реки
х - 1 (км/ч) - скорость лодки против течения реки
S = v * t - формула пути
v = х + 1 + х - 1 = 2х (км/ч) - скорость сближения
t = 1,9 (ч) - время в пути
S = 98,8 (км) - расстояние между пристанями
Подставим все значения в формулу и решим уравнение:
2х * 1,9 = 98,8
3,8х = 98,8
х = 98,8 : 3,8
х = 26 (км/ч) - скорость лодки в стоячей воде;
(26 + 1) * 1,9 = 51,3 (км) - расстояние до места встречи, которое пройдёт лодка, плывущая по течению реки;
(26 - 1) * 1,9 = 47,5 (км) - расстояние до места встречи, которое пройдёт лодка, плывущая против течения реки.
ответ: 26 км/ч; 51,3 км; 47,5 км.
График — парабола, ветви направлены вниз (a = -1), получена из графика y=-x², сдвигом на 2 вправо (по оси X) и на 9 вверх.
ХОД РЕШЕНИЯ:
1) Выпишем коэффициенты.
2) Найдем начало координат (то есть то место, откуда начинается парабола после сдвига — вершину):
4) Значит, парабола сдвинется на 2 единичных отрезка вправо (по оси X) и на 9 единичных отрезков вверх (по оси Y). ⇒ О₁(2;9).
Внимание! Строим график функции не y=-x²+4x+5, а y=-x².
Берем стандартные значения, и по ним строим график:
x = 0, y = 0
x = 1, y = -1
x = 2, y = -4.
График в приложении. Желаю успехов!