1.f(6)=6^2-6*6+8=36-36+8=8, f(1)=1^2-1*6+8=1-6+8=3 2. подставим вместо ф(х) нужное значние и решим уравнение. 8=х^2-6x+8=>x^2-6x=0=>x(x-6)=0=>x=0 и х=6то есть функця равна 8 при х=0 и х=6. -1=х^2-6x+8=>х^2-6x+9=0=>D=36-36=0=>x=3функция равна -1 при х=3 -2=х^2-6x+8=>х^2-6x+10=>D=36-4*10*1=36-40<0Функция не имеет значений х при которых ее значений равно -2. 3.Рассматривая наибольшее и наименьшее значение функции удобнее выбрать интервал от 0, до 6. С графика видим что наименьшее значение при х=3 при котором значение функции=-1, а наибольшее это х=6 при котором значение функции=8 4.область значений фугнкции ує[- бесконечность;+ бесконечность} 5.для определения промежутокв возрастания и убывания найдем производную функции и приравняем ее к нолю., производная функции равна 2х-6. Теперь приравняем ее к нолю и найдем корни., 2х-6=0, откуда 2х=6, х=3. теперь смотрим как ведет себя функции на промежутках -беск до 3 и от трех до +беск. Функция убывает на промежутке хе[-беск; 3], а возрастает х е [3; + бесконечность] 6. положительные значчения на промежуткке от -бесконечности до 2 и от 4 до плюс бесконечности, а отрицательные знаения функция принимает на промежутке от 2 до 4 Графикфункции: представлен в загруженном рисунке
14;14
Объяснение:
Дан числовой ряд: 21, 14, 8, 14, 13, 10, 14, 8, 13, 15, 24.
Найдите среднее арифметическое и медиану этого ряда.
Среднее арифметическое = (21+14+8+14+13+10+14+8+13+15+24)/11= 14
Упорядочим ряд по возрастанию:
8, 8, 10, 13, 13, 14, 14, 14, 15, 21 , 24
Поскольку количество чисел в ряду нечётное, то число 14 стоящее по середине и будет являться медианой данного ряда.
Если бы количество чисел в ряду было бы чётное, то медиана этого ряда будет равна полусумме двух средних чисел.
отметь как лучшее
2. подставим вместо ф(х) нужное значние и решим уравнение.
8=х^2-6x+8=>x^2-6x=0=>x(x-6)=0=>x=0 и х=6то есть функця равна 8 при х=0 и х=6.
-1=х^2-6x+8=>х^2-6x+9=0=>D=36-36=0=>x=3функция равна -1 при х=3
-2=х^2-6x+8=>х^2-6x+10=>D=36-4*10*1=36-40<0Функция не имеет значений х при которых ее значений равно -2.
3.Рассматривая наибольшее и наименьшее значение функции удобнее выбрать интервал от 0, до 6. С графика видим что наименьшее значение при х=3 при котором значение функции=-1, а наибольшее это х=6 при котором значение функции=8
4.область значений фугнкции ує[- бесконечность;+ бесконечность}
5.для определения промежутокв возрастания и убывания найдем производную функции и приравняем ее к нолю., производная функции равна 2х-6. Теперь приравняем ее к нолю и найдем корни., 2х-6=0, откуда 2х=6, х=3. теперь смотрим как ведет себя функции на промежутках -беск до 3 и от трех до +беск. Функция убывает на промежутке хе[-беск; 3], а возрастает х е [3; + бесконечность]
6. положительные значчения на промежуткке от -бесконечности до 2 и от 4 до плюс бесконечности, а отрицательные знаения функция принимает на промежутке от 2 до 4
Графикфункции: представлен в загруженном рисунке