Не-не, тут не как сложную ф-цию,а как произведение нужно дифференциировать:
Если так - y=((5x^4)/5+2/x)(2x^4-x), то:
y'=((5x^4)/5+2/x)'(2x^4-x)+(5x^4/5+2/x)(2x^4-x)'= (производная от первой помноженная на вторую + первая на производную второй)
=((20x^3)/5-2/x^2)(2x^4-x)+(5x^4/5+2/x)(8x^3-1)=(4x^3-2/x^2)(2x^4-x)+(8x^3-1)(x^4+2/x)=...=
=x^2(16x^5-5x^2+12)
можно проще - раскрыть скобки и продифференциировать как многочлен:
y=((5x^4)/5+2/x)(2x^4-x)=(2x^3-1)(x^5+2)=2x^8-x^5+4x^3-2
y'=(2x^8-x^5+4x^3-2)'=2*8x^7-5x^4+4*3x^2=16x^7-5x^4+12x^2=x^2(16x^5-5x^2+12)
Если же вот так - y=(5x^(4/5)+2/x)(2x^4-x), то:
y'=(5x^(4/5)+2/x)'(2x^4-x)+(5x^(4/5)+2/x)(2x^4-x)'=
=(5*(4/5)x^(1/5)-2/x^2)(2x^4-x)+(5x^(4/5)+2/x)(8x^3-1)=
=(4/x^(1/5)-2/x^2)(2x^4-x)+(5x^(4/5)+2/x)(8x^3-1)=...=3x^(4/5)(4x^(6/5)+16x^3-3)
или:
y=(5x^(4/5)+2/x)(2x^4-x)=10x^(24/5)-5x^(9/5)+4x^3-2
y'=(10x^(24/5)-5x^(9/5)+4x^3=+48x^(19/5)-9x^(4/5)+12x^2=3x^(4/5)(16x^3-3+4x^(6/5))
Все.
И, если 5x^4/5 - это 5x^(4/5), что мне кажется более вероятным, то пиши внимательней.
Не-не, тут не как сложную ф-цию,а как произведение нужно дифференциировать:
Если так - y=((5x^4)/5+2/x)(2x^4-x), то:
y'=((5x^4)/5+2/x)'(2x^4-x)+(5x^4/5+2/x)(2x^4-x)'= (производная от первой помноженная на вторую + первая на производную второй)
=((20x^3)/5-2/x^2)(2x^4-x)+(5x^4/5+2/x)(8x^3-1)=(4x^3-2/x^2)(2x^4-x)+(8x^3-1)(x^4+2/x)=...=
=x^2(16x^5-5x^2+12)
можно проще - раскрыть скобки и продифференциировать как многочлен:
y=((5x^4)/5+2/x)(2x^4-x)=(2x^3-1)(x^5+2)=2x^8-x^5+4x^3-2
y'=(2x^8-x^5+4x^3-2)'=2*8x^7-5x^4+4*3x^2=16x^7-5x^4+12x^2=x^2(16x^5-5x^2+12)
Если же вот так - y=(5x^(4/5)+2/x)(2x^4-x), то:
y'=(5x^(4/5)+2/x)'(2x^4-x)+(5x^(4/5)+2/x)(2x^4-x)'=
=(5*(4/5)x^(1/5)-2/x^2)(2x^4-x)+(5x^(4/5)+2/x)(8x^3-1)=
=(4/x^(1/5)-2/x^2)(2x^4-x)+(5x^(4/5)+2/x)(8x^3-1)=...=3x^(4/5)(4x^(6/5)+16x^3-3)
или:
y=(5x^(4/5)+2/x)(2x^4-x)=10x^(24/5)-5x^(9/5)+4x^3-2
y'=(10x^(24/5)-5x^(9/5)+4x^3=+48x^(19/5)-9x^(4/5)+12x^2=3x^(4/5)(16x^3-3+4x^(6/5))
Все.
И, если 5x^4/5 - это 5x^(4/5), что мне кажется более вероятным, то пиши внимательней.
x³ -8x² -x+8=0
x²(x-8)-(x-8)=0
(x-8)(x²-1)=0
(x-8)(x-1)(x+1)=0
x-8=0 x-1=0 x+1=0
x=8 x=1 x= -1
ответ: -1; 1; 8.
2)
3x³-x²+18x-6=0
(3x³-x²)+(18x-6)=0
x²(3x-1)+6(3x-1)=0
(3x-1)(x²+6)=0
3x-1=0 x²+6=0
3x=1 x²= -6
x=¹/₃ нет решений.
ответ: ¹/₃.
3)
y=2x²+3
y² -12y+11=0
y²-(11y+y)+11=0
y²-11y-y+11=0
(y²-11y)-(y-11)=0
y(y-11)-(y-11)=0
(y-11)(y-1)=0
y-11=0 y-1=0
y=11 y=1
2x²+3=11 2x²+3=1
2x²=11-3 2x²=1-3
2x²=8 2x²= -2
x²=4 x²= -1
x₁=2 нет решений
x₂= -2
ответ: -2; 2.
4)
y=x²-5x
(y+4)(y+6)=120
y²+4y+6y+24-120=0
y²+10y-96=0
D=10² -4*(-96)=100+384=484=22²
y₁=(-10-22)/2= -16 y₂=(-10+22)/2=6
x²-5x=-16 x²-5x=6
x²-5x+16=0 x²-5x-6=0
D=(-5)² -4*16=25-64<0 D=(-5)² -4*(-6)=25+24=49
нет решений x₁=(5-7)/2= -1
x₂=(5+7)/2=6
ответ: -1; 6.