Окружность около параллелограмма можно описать только тогда, когда этот параллелограмм - прямоугольник.
Стороны его попарно равны.
1)
Площадь этого параллелограмма равна произведению сторон. S=3*4=12
Площадь равновеликого квадрата а²=12
а=√12=2√3.
Р/√3=2
2)
Углы ВКА и КАD равны, как накрестлежащие, а углы ВАК и КАD равны по условию. Поэтому треугольник АВК - равнобедренный прямоугольный и его гипотенуза АК=3√2
АК/√2=(3√2)/√2=3
3)
Четырехугольник АКСD - прямоугольная трапеция с высотой=CD=3 и основаниями КС и АD.
Уравнение квадратичной функции в общем виде y=ax²+bx+c. Если функция проходит через заданные точки, то они должны удовлетворять этой функции: точка (0;3) _ a0²+b0+c=3; c=3; точка (1;5) _ a1²+b1+c=5; a+b+c=5; точка (2;9); a2²+b2+c=9. Решаем систему этих уравнений: a+b+3=5; 4a+2b+3=9. Из первого уравнения выделяем а: a=2-b и подставляем его во второе уравнение: 4(2-b)+2b=9-3; 8-4b+2b=6; -2b=-2; b=1. Находим а: а=2-1=1. Теперь, когда все коэффициенты известны можем записать уравнение проходящее через заданные точки: у=x²+х+3
Окружность около параллелограмма можно описать только тогда, когда этот параллелограмм - прямоугольник.
Стороны его попарно равны.
1)
Площадь этого параллелограмма равна произведению сторон. S=3*4=12
Площадь равновеликого квадрата а²=12
а=√12=2√3.
Р/√3=2
2)
Углы ВКА и КАD равны, как накрестлежащие, а углы ВАК и КАD равны по условию. Поэтому треугольник АВК - равнобедренный прямоугольный и его гипотенуза АК=3√2
АК/√2=(3√2)/√2=3
3)
Четырехугольник АКСD - прямоугольная трапеция с высотой=CD=3 и основаниями КС и АD.
КС=ВС-ВК=4-3=1
S (АКСD)=CD*(KC+AD):2
S (АКСD)=3*(1+4):2=7,5