3) y=2x-2 Задаем два значения Х и получаем два значения У. х=0, у=-2 х=2, у=2
На координатной плоскости отмечаем две точки (0;-2) и (2;2) и получаем прямую. Чтобы определить принадлежность точки А(-25;-52) к графику подставляем значение Х в функцию. Если У будет равно -52, то точка принадлежит графику, если не равно -52, то не принадлежит. Т.е. у=2*(-25)-2=-50-2=-52, значит точка А принадлежит графику функции
Где (х0, у0) координаты центра окружности, а R - ее радиус
Если окружность имеет центр в начале координат, то уравнение примет вид:
х^2 + у^2 = R^2
Последнее уравнение похоже на данное нам, поэтому делаем вывод, что окружность имеет центр в начале координат, а ее радиус равен корню из 81. Т.е. радиус равен 9. На основе выше сказанного можно утверждать, что окружность пересекает оси координат в точках:
доп множитель для первой дроби 5, для второй 3, а для двойки 15
получаем
5х+40-3х+6=30
2х= -10
х= -5
2) {x=5+2y, 3(5+2y)+5y=26
{x=5+2y, 15+6y+5y=26
{x=5+2y, 11y=11
{y=1, x=7
3) y=2x-2 Задаем два значения Х и получаем два значения У.
х=0, у=-2
х=2, у=2
На координатной плоскости отмечаем две точки (0;-2) и (2;2) и получаем прямую.
Чтобы определить принадлежность точки А(-25;-52) к графику подставляем значение Х в функцию. Если У будет равно -52, то точка принадлежит графику, если не равно -52, то не принадлежит.
Т.е. у=2*(-25)-2=-50-2=-52, значит точка А принадлежит графику функции
По оси х: 9 и (-9)
По оси у: 9 и (-9)
Объяснение:
Общий вид уравнения окружности:
(x-x0)^2 + (y-y0)^2 = R^2
Где (х0, у0) координаты центра окружности, а R - ее радиус
Если окружность имеет центр в начале координат, то уравнение примет вид:
х^2 + у^2 = R^2
Последнее уравнение похоже на данное нам, поэтому делаем вывод, что окружность имеет центр в начале координат, а ее радиус равен корню из 81. Т.е. радиус равен 9. На основе выше сказанного можно утверждать, что окружность пересекает оси координат в точках:
По оси х: 9 и (-9)
По оси у: 9 и (-9)