Войти
Регистрация
Спроси ai-bota
В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Показать больше
Показать меньше
islamlg
20.02.2023 18:51 •
Алгебра
Известно, что квадратичная функция может быть задана формулой у = а(х – х0)2 + у0, где (х0; у0) – координаты вершины параболы. ответьте на во Запишите координаты вершины параболы, заданной формулой у = (х+2)2 + 1
Показать ответ
Ответ:
200775данил1717
27.09.2020 09:37
Формулы n-го члена и суммы n членов известны
an = a1 + d*(n - 1)
S(n) = (a1 + an)*n/2 = (2a1 + d*(n-1))*n/2
1) a1 = -5, n = 23, S(n) = 1909
1909 = (-2*5 + d*22)*23/2 = (-5 + 11d)*23
-5 + 11d = 1909/23 = 83
11d = 88, d= 8
2) a1 = -3,87, d= -2,77 + 3,87 = 1,1, n = 10
a10 = a1 + 9d = -3,87 + 9*1,1 = 9,9 - 3,87 = 6,03
S(10) = (-3,87 + 6,03)*10/2 = 2,16*5 = 10,8
3) a2 = a1 + d= 2, a9 = a1 + 8d = 6,9
a9 - a2 = 7d = 6,9 - 2 = 4,9
d= 0,7
4) 1) x1 = 3 + 2 = 5, x2 = 6 + 2 = 8, d= 3
S(20) = (2*5 + 3*19)*20/2 = (10 + 57)*10 = 670
2) x1 = 4 - 9 = -5, x2 = 8 - 9 = -1, d= 4
S(30) = (-2*5 + 4*29)*30/2 = (-10 + 116)*15 = 1590
5) 1) d= 2, an = 49, S(n) = 702
Система
{ an = a1 + d(n-1) = a1 + 2(n-1) = 49
{ S(n) = (a1 + an)*n/2 = (a1 + 49)*n/2 = 702
{ a1 + 2n = 49 + 2 = 51
{ a1*n + 49n = 702*2 = 1404
{ a1 = 51 - 2n
{ (51 - 2n)*n + 49n - 1404 = 0
-2n^2 + 100n - 1404 = 0
n^2 - 50n + 702 = 0
(n - 27)(n - 13) = 0
n = 13, a1 = 51 - 26 = 25
n = 27, a1 = 51 - 54 = -3
2) an = 18 - 2n, S(n) = n*(17 - n)
an = a1 + d(n-1) = a1-d + dn = 18 - 2n
S(n) = (2a1 + d(n-1))*n/2 = n*(17 - n)
Система
{ (a1-d) + dn = 18 - 2n
{ (2a1-d) + dn = 2(17 - n) = 34 - 2n
Из 2 уравнения вычитаем 1 уравнение
a1 = 34 - 18 = 16
Подставляем обратно в 1 уравнение
16 + dn - d = 18 - 2n
dn - d = 2 - 2n
d(n - 1) = -2(n - 1)
d= -2
Количество членов n узнать не удалось, к сожалению.
0,0
(0 оценок)
Ответ:
Ониг
27.09.2020 09:37
Формулы n-го члена и суммы n членов известны
an = a1 + d*(n - 1)
S(n) = (a1 + an)*n/2 = (2a1 + d*(n-1))*n/2
1) a1 = -5, n = 23, S(n) = 1909
1909 = (-2*5 + d*22)*23/2 = (-5 + 11d)*23
-5 + 11d = 1909/23 = 83
11d = 88, d= 8
2) a1 = -3,87, d= -2,77 + 3,87 = 1,1, n = 10
a10 = a1 + 9d = -3,87 + 9*1,1 = 9,9 - 3,87 = 6,03
S(10) = (-3,87 + 6,03)*10/2 = 2,16*5 = 10,8
3) a2 = a1 + d= 2, a9 = a1 + 8d = 6,9
a9 - a2 = 7d = 6,9 - 2 = 4,9
d= 0,7
4) 1) x1 = 3 + 2 = 5, x2 = 6 + 2 = 8, d= 3
S(20) = (2*5 + 3*19)*20/2 = (10 + 57)*10 = 670
2) x1 = 4 - 9 = -5, x2 = 8 - 9 = -1, d= 4
S(30) = (-2*5 + 4*29)*30/2 = (-10 + 116)*15 = 1590
5) 1) d= 2, an = 49, S(n) = 702
Система
{ an = a1 + d(n-1) = a1 + 2(n-1) = 49
{ S(n) = (a1 + an)*n/2 = (a1 + 49)*n/2 = 702
{ a1 + 2n = 49 + 2 = 51
{ a1*n + 49n = 702*2 = 1404
{ a1 = 51 - 2n
{ (51 - 2n)*n + 49n - 1404 = 0
-2n^2 + 100n - 1404 = 0
n^2 - 50n + 702 = 0
(n - 27)(n - 13) = 0
n = 13, a1 = 51 - 26 = 25
n = 27, a1 = 51 - 54 = -3
2) an = 18 - 2n, S(n) = n*(17 - n)
an = a1 + d(n-1) = a1-d + dn = 18 - 2n
S(n) = (2a1 + d(n-1))*n/2 = n*(17 - n)
Система
{ (a1-d) + dn = 18 - 2n
{ (2a1-d) + dn = 2(17 - n) = 34 - 2n
Из 2 уравнения вычитаем 1 уравнение
a1 = 34 - 18 = 16
Подставляем обратно в 1 уравнение
16 + dn - d = 18 - 2n
dn - d = 2 - 2n
d(n - 1) = -2(n - 1)
d= -2
Количество членов n узнать не удалось, к сожалению.
0,0
(0 оценок)
Популярные вопросы: Алгебра
vikamolchanova1
09.09.2021 19:24
Задачи 4 несколько Гусар сидят за круглым столом и играют в картыправила простые первым ходом на стол нужно положить эту карту далее каждым ходом нужно положить на...
temka32984
15.11.2022 10:52
Считается ли точка х=8 точкой разрыва для функции у=ln(x-8) ?...
adrienagrest
22.03.2021 06:37
6.1 Является ли квадратным уравнение:...
kuekkukov
14.04.2023 02:54
освободитесь от иррациональности в знаменателе дроби : 13 \ корень3 + 4...
valityuk
18.07.2022 21:33
УМОЛЯЮ СОЧ 1) Среди действительных чисел выберите иррациональное число 2,8 корень 25, 1/3, 1/корень36, 1,7...
Ипак44
30.01.2020 12:27
Найдите корни уравнения (x²-3x+2)(x+3)-0...
misha20042
20.02.2021 08:45
лЮдИ дОбРыЕ, а то не могу решить крестьянскую задачу бл...
TASHER228YMM
22.10.2021 20:34
Рисунке 4.26 изображе-ны прямые a, b, c и d. Co-отнесите каждую из нихс одним из уравнений:у = 2х + 2, y = -2х + 2,y=1/3x+2, y= - 1/3x+2...
Slendergirl345
10.09.2022 19:55
Разложите на множители трехчлены ...
Slava1432
06.06.2020 15:57
Чему равны корни уравнения?...
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota
Оформи подписку
О НАС
О нас
Блог
Карьера
Условия пользования
Авторское право
Политика конфиденциальности
Политика использования файлов cookie
Предпочтения cookie-файлов
СООБЩЕСТВО
Сообщество
Для школ
Родителям
Кодекс чести
Правила сообщества
Insights
Стань помощником
ПОМОЩЬ
Зарегистрируйся
Центр помощи
Центр безопасности
Договор о конфиденциальности полученной информации
App
Начни делиться знаниями
Вход
Регистрация
Что ты хочешь узнать?
Спроси ai-бота
an = a1 + d*(n - 1)
S(n) = (a1 + an)*n/2 = (2a1 + d*(n-1))*n/2
1) a1 = -5, n = 23, S(n) = 1909
1909 = (-2*5 + d*22)*23/2 = (-5 + 11d)*23
-5 + 11d = 1909/23 = 83
11d = 88, d= 8
2) a1 = -3,87, d= -2,77 + 3,87 = 1,1, n = 10
a10 = a1 + 9d = -3,87 + 9*1,1 = 9,9 - 3,87 = 6,03
S(10) = (-3,87 + 6,03)*10/2 = 2,16*5 = 10,8
3) a2 = a1 + d= 2, a9 = a1 + 8d = 6,9
a9 - a2 = 7d = 6,9 - 2 = 4,9
d= 0,7
4) 1) x1 = 3 + 2 = 5, x2 = 6 + 2 = 8, d= 3
S(20) = (2*5 + 3*19)*20/2 = (10 + 57)*10 = 670
2) x1 = 4 - 9 = -5, x2 = 8 - 9 = -1, d= 4
S(30) = (-2*5 + 4*29)*30/2 = (-10 + 116)*15 = 1590
5) 1) d= 2, an = 49, S(n) = 702
Система
{ an = a1 + d(n-1) = a1 + 2(n-1) = 49
{ S(n) = (a1 + an)*n/2 = (a1 + 49)*n/2 = 702
{ a1 + 2n = 49 + 2 = 51
{ a1*n + 49n = 702*2 = 1404
{ a1 = 51 - 2n
{ (51 - 2n)*n + 49n - 1404 = 0
-2n^2 + 100n - 1404 = 0
n^2 - 50n + 702 = 0
(n - 27)(n - 13) = 0
n = 13, a1 = 51 - 26 = 25
n = 27, a1 = 51 - 54 = -3
2) an = 18 - 2n, S(n) = n*(17 - n)
an = a1 + d(n-1) = a1-d + dn = 18 - 2n
S(n) = (2a1 + d(n-1))*n/2 = n*(17 - n)
Система
{ (a1-d) + dn = 18 - 2n
{ (2a1-d) + dn = 2(17 - n) = 34 - 2n
Из 2 уравнения вычитаем 1 уравнение
a1 = 34 - 18 = 16
Подставляем обратно в 1 уравнение
16 + dn - d = 18 - 2n
dn - d = 2 - 2n
d(n - 1) = -2(n - 1)
d= -2
Количество членов n узнать не удалось, к сожалению.
an = a1 + d*(n - 1)
S(n) = (a1 + an)*n/2 = (2a1 + d*(n-1))*n/2
1) a1 = -5, n = 23, S(n) = 1909
1909 = (-2*5 + d*22)*23/2 = (-5 + 11d)*23
-5 + 11d = 1909/23 = 83
11d = 88, d= 8
2) a1 = -3,87, d= -2,77 + 3,87 = 1,1, n = 10
a10 = a1 + 9d = -3,87 + 9*1,1 = 9,9 - 3,87 = 6,03
S(10) = (-3,87 + 6,03)*10/2 = 2,16*5 = 10,8
3) a2 = a1 + d= 2, a9 = a1 + 8d = 6,9
a9 - a2 = 7d = 6,9 - 2 = 4,9
d= 0,7
4) 1) x1 = 3 + 2 = 5, x2 = 6 + 2 = 8, d= 3
S(20) = (2*5 + 3*19)*20/2 = (10 + 57)*10 = 670
2) x1 = 4 - 9 = -5, x2 = 8 - 9 = -1, d= 4
S(30) = (-2*5 + 4*29)*30/2 = (-10 + 116)*15 = 1590
5) 1) d= 2, an = 49, S(n) = 702
Система
{ an = a1 + d(n-1) = a1 + 2(n-1) = 49
{ S(n) = (a1 + an)*n/2 = (a1 + 49)*n/2 = 702
{ a1 + 2n = 49 + 2 = 51
{ a1*n + 49n = 702*2 = 1404
{ a1 = 51 - 2n
{ (51 - 2n)*n + 49n - 1404 = 0
-2n^2 + 100n - 1404 = 0
n^2 - 50n + 702 = 0
(n - 27)(n - 13) = 0
n = 13, a1 = 51 - 26 = 25
n = 27, a1 = 51 - 54 = -3
2) an = 18 - 2n, S(n) = n*(17 - n)
an = a1 + d(n-1) = a1-d + dn = 18 - 2n
S(n) = (2a1 + d(n-1))*n/2 = n*(17 - n)
Система
{ (a1-d) + dn = 18 - 2n
{ (2a1-d) + dn = 2(17 - n) = 34 - 2n
Из 2 уравнения вычитаем 1 уравнение
a1 = 34 - 18 = 16
Подставляем обратно в 1 уравнение
16 + dn - d = 18 - 2n
dn - d = 2 - 2n
d(n - 1) = -2(n - 1)
d= -2
Количество членов n узнать не удалось, к сожалению.