1) х4-5х2+4=0 тк это биквадратное уравнение то пусть х2= t, где t - неотрицательное число тогда: - 5t + 4=0 по т. виета t1= 4 t2 = -1, не подходит по условию остается только t=4 вернемся к исходной переменной х2=4 х=2 или х=-2 2)2 - -1=0 так же обозначаем за t, t- неотрицательноe 2 -t-1=0 d=1+4*2*1=9 t1=1 t2=-0.5, не подходит по условию вернемся к исходной переменной =1 х=1 или х=-1
2x^2 - xy - y^2 = 5 |*3
5x^2 - 5xy + 5y^2 = 15
6x^2 - 3xy - 3y^2 = 15 |(2)-(1)
x^2 + 2xy - 8y^2 = 0
Подставляя значение х = 0 и y = 0 в исходную систему, убеждаемся, что (0; 0) не является её решением. Поэтому можем почтенно разделить полученное уравнение на xy.
x/y + 2 - 8y/x = 0
Замена x/y = t, t <> 0
t + 2 - 8/t = 0 | *t
t^2 + 2t - 8 = 0
По теореме Виета: t1 = -4, t2 = 2.
При t = -4: x/y = -4 или x = -4y.
Подставляем в первое уравнение исходной системы:
(-4y)^2 - (-4y)*y + y^2 = 3
21y^2 = 3
y = (+/-) 1/sqrt7
x = (-/+) 4/sqrt7
При t = 2: x/y = 2 или x = 2y.
Подставляем в первое уравнение исходной системы:
(2y)^2 - 2y*y + y^2 = 3
3y^2 = 3
y = (+/-) 1
x = (+/-) 2
ответ: (1/sqrt7; -4/sqrt7), (-1/sqrt7; 4/sqrt7), (1; 2), (-1; -2).