Моторная лодка за 8 часов проплыла 45 км против течения и вернулась обратно. Найди скорость моторной лодки в стоячей воде, если скорость течения реки равна 3 км/час.
Скорость моторной лодки в стоячей воде v км/час
Скорость моторной лодки против течения (v-3) км/час
Скорость моторной лодки по течению (v+3) км/час
Время затраченное на путь против течения 45/(x-3) час
1) При каких значениях переменной принимает неотрицательное значение выражение -x²-2x+120?
Неотрицательное - значит, больше либо равно 0.
-x²-2x+120 >=0
Приравнять к нулю и решить как квадратное уравнение:
-x²-2x+120 =0/-1
х²+2х-120=0
D=b²-4ac =4+480=484 √D= 22
х₁=(-b-√D)/2a
х₂=(-b+√D)/2a
х₁=(-2-22)/2
х₁= -24/2
х₁= -12;
х₂=(-2+22)/2
х₂=20/2
х₂=10.
Теперь начертим СХЕМУ параболы (ничего вычислять не нужно), которую выражает данное уравнение, ветви направлены вниз, парабола пересекает ось Ох при х= -12 и х=10, отмечаем эти точки схематично, смотрим на график.
По графику ясно видно, что у>=0 (как в неравенстве), при х от -12 до х=10, часть параболы выше оси Ох, то есть, решения неравенства находятся в интервале
х∈ [-12, 10]. ответ задания.
Неравенство нестрогое, значения х= -12 и х= 10 входят в решения неравенства, поэтому скобки квадратные.
12 км/час
Объяснение:
Моторная лодка за 8 часов проплыла 45 км против течения и вернулась обратно. Найди скорость моторной лодки в стоячей воде, если скорость течения реки равна 3 км/час.
Скорость моторной лодки в стоячей воде v км/час
Скорость моторной лодки против течения (v-3) км/час
Скорость моторной лодки по течению (v+3) км/час
Время затраченное на путь против течения 45/(x-3) час
Время затраченное на путь по течению 45/(x+3) час
45/(x-3)+45/(x+3)=8
(x-3)(x+3)(45/(x-3)+45/(x+3))=8(x-3)(x+3)
45(x+3)+45(x-3)=8(x²-9)
45x+135+45x-135=8x²-72
8x²-90x-72=0
4x²-45x-36=0
D=2025+576=2601=51²
x₁=(45-51)/8=-3/4<0
x₂=(45+51)/8=12 км/час
В решении.
Объяснение:
1) При каких значениях переменной принимает неотрицательное значение выражение -x²-2x+120?
Неотрицательное - значит, больше либо равно 0.
-x²-2x+120 >=0
Приравнять к нулю и решить как квадратное уравнение:
-x²-2x+120 =0/-1
х²+2х-120=0
D=b²-4ac =4+480=484 √D= 22
х₁=(-b-√D)/2a
х₂=(-b+√D)/2a
х₁=(-2-22)/2
х₁= -24/2
х₁= -12;
х₂=(-2+22)/2
х₂=20/2
х₂=10.
Теперь начертим СХЕМУ параболы (ничего вычислять не нужно), которую выражает данное уравнение, ветви направлены вниз, парабола пересекает ось Ох при х= -12 и х=10, отмечаем эти точки схематично, смотрим на график.
По графику ясно видно, что у>=0 (как в неравенстве), при х от -12 до х=10, часть параболы выше оси Ох, то есть, решения неравенства находятся в интервале
х∈ [-12, 10]. ответ задания.
Неравенство нестрогое, значения х= -12 и х= 10 входят в решения неравенства, поэтому скобки квадратные.