рассмотрим на примерах несколько решения систем подстановки.Решим систему уравнений подстановки заключается в следующем:1) выражаем одно неизвестное через другое, воспользовавшись одним из заданных уравнений. Обычно выбирают то уравнение, где это делается проще. В данном случае нам все равно, какое из заданных уравнений использовать для нашей цели. Возьмем, например, первое уравнение системы, и выразим x через y: .2) подставим во второе уравнение системы вместо x полученное равенство: .Получили линейное уравнение относительно переменной y. Решим это уравнение, помножим это равенство на 2, чтобы избавиться от дроби в левой части равенства:Подставим найденное значение в равенство, выражающее x, получим: .Таким образом, нами найдена пара значений , которая является решением заданной системы. Осталось сделать проверку.Проверка уравнивания коэффициентов при неизвестных состоит в том, что исходную систему приводят к такой эквивалентной системе, где коэффициенты при x или y были одинаковы. Покажем, как это делается, на данном примере.Решим систему: 1) Для приравнивания коэффициентов, например при y надо найти НОК(3; 5)=15, где 3 и 5 —коэффициенты при y в уравнениях системы. Затем разделить 15 на 3 — коэффициент при y в первом уравнении, получим 5. Делим 15 на 5 — коэффициент при — во втором уравнении, получаем 3. Следовательно, первое уравнение системы умножаем на 5. а второе на 3:2) Так как коэффициенты при y имеют противоположные знаки, складываем почленно уравнения системы:3) Для нахождения соответствующего значения y подставим значение x в любое исходное уравнение системы (обычно подставляют в то уравнение системы, где отыскание значения y проще). В исходной системе уравнения одинаковы по сложности, поэтому подставим значение x = 4 во второе уравнение, чтобы не делать лишней операции деления на -1: Таким образом, найдена пара значений которая является решением заданной системы.Иногда задаются системы уравнений, где нет необходимости в уравнивании коэффициентов при неизвестных. Почленное сложение или вычитание уравнений системы приводит к простейшему решению.Например, решить систему уравнений: Складывая почленно уравнения заданной системы, получим:.Подставив вместо x значение 5 во второе уравнение исходной системы, находим соответствующее значение y:
1) Из того, что ВД - медиана, - равенство площадей треугольников АВД и СВД. 2) Из равенства площадей - равенство сторон АВ и ВС. 3) Из равенства сторон - ВД - не только медиана треугольника АВС, но и биссектриса (угол АВД = углу СВД) и высота (ВД перпендикулярна АС). 4) Из перпендикулярности ВД к АС треугольник АВД - прямоугольный. 5) Из отношения 1:2 катета ВД к гипотенузе АВ - угол А=30 градусов. 6) Из суммы углов треугольника = 180 градусов - угол АВД = 60 градусов. 7) Из 3) угол СВД = 60 градусов. 8) Найти угол FВС. 9) Сравнить угол FВС с углом СВД. 10) Сделать вывод.
2) Из равенства площадей - равенство сторон АВ и ВС.
3) Из равенства сторон - ВД - не только медиана треугольника АВС, но и биссектриса (угол АВД = углу СВД) и высота (ВД перпендикулярна АС).
4) Из перпендикулярности ВД к АС треугольник АВД - прямоугольный.
5) Из отношения 1:2 катета ВД к гипотенузе АВ - угол А=30 градусов.
6) Из суммы углов треугольника = 180 градусов - угол АВД = 60 градусов.
7) Из 3) угол СВД = 60 градусов.
8) Найти угол FВС.
9) Сравнить угол FВС с углом СВД.
10) Сделать вывод.