Стандартный алгоритм нахождения наименьшего значения функции y=f(x) на отрезке [a; b] следующее:
1) находим критические точки функции, которые входят в заданный отрезок [a; b], то есть найдем производную функции f(x) и находим нули производной на отрезке [a; b] (решаем уравнение f '(x)=0);
2) вычислим значения функции f(x) для критических точек из отрезка [a; b] и для граничных значений a и b;
3) ответом будут наименьшее значение среди полученных значений функции.
Дана функция y = (x–9)²·(x+4)–4 и отрезок [7; 16].
–4
Объяснение:
Стандартный алгоритм нахождения наименьшего значения функции y=f(x) на отрезке [a; b] следующее:
1) находим критические точки функции, которые входят в заданный отрезок [a; b], то есть найдем производную функции f(x) и находим нули производной на отрезке [a; b] (решаем уравнение f '(x)=0);
2) вычислим значения функции f(x) для критических точек из отрезка [a; b] и для граничных значений a и b;
3) ответом будут наименьшее значение среди полученных значений функции.
Дана функция y = (x–9)²·(x+4)–4 и отрезок [7; 16].
1) находим критические точки функции:
y'=((x–9)²·(x+4)–4)'=((x–9)²)'·(x+4)+(x–9)²·(x+4)'–(4)'=
=2·(x–9)²⁻¹·(x+4)+(x–9)²·1–0=2·(x–9)·(x+4)+(x–9)²=
=(x–9)·(2·x+8+x–9)=(x–9)·(3·x–1)
y'=0 ⇔ (x–9)·(3·x–1)=0 ⇔ x=9 ∈ [7; 16], x=1/3 ∉ [7; 16].
2) вычислим значения функции f(x) для критической точки x=9, граничных точек x=7 и x=16:
y(7)= (7–9)²·(7+4)–4 = 4·11–4 = 44–4 = 40
y(9)= (9–9)²·(9+4)–4 = 0·13–4 = –4
y(16)= (16–9)²·(16+4)–4 = 49·20–4 = 980–4 = 976
Среди найденных значений выбираем наименьшее, то есть:
y(9) = –4.
Пусть х(литров в минуту)-скорость первой трубы и x+7(литров в минуту )-скорость второй трубы, тогда составим и решим уравнение.
144/x-144/(x+7)=7
Находим дополнительные множители и получаем следущие:
(144x+1008-144x-7x^2-49x)/(x^2+7x) ОДЗ:x(x+7) не равно 0
x не равно 0 и x не равно-7
-7x^2-49x+1008=0
x^2+7x-144=0
D=b^2-4ac
D=625>0=>2 корня
x1,x2=(-b±√d)/2a
x1=9
x2=-16=>не удовл условию задачи
ответ:Первая труба пропускает 9 литров в минуту