Для того, чтобы найти точку пересечения прямых, заданных уравнениями y = x + 2 и y = 3x - 2 мы с вами составим и решим систему линейных уравнений.
Система уравнений:
y = x + 2;
y = 3x - 2.
Решать систему уравнений будем одним из методов — методом подстановки. Давайте в первое уравнение системы вместо y подставим выражение из второго уравнений.
сразу приношу извинения за невозможность нарисовать куб/не работает вложение/, но это совсем не сложно. откройте любой учебник. посмотрите, как он рисуется. дальше, т.к. сечение соединяет два противолежащих ребра куба, будет прямоугольником, (доказать легко- два противоположных ребра куба равны и параллельны и ребро куба перпендикулярно стороне, например, основания, т.е. квадрата, лежащего в основании, тогда оно перпендикулярно и диагонали квадрата - боковой грани по теореме о трех перпендикулярах. площадь этого сечения 64√2 см², пусть, сторона основания х, тогда диагональ боковой грани х√2 см, т.к. все стороны квадрата х, значит, х*х√2=64√2⇒х=8, значит, ребро куба 8 см, квадрат диагонали куба равен сумме квадратов трех его измерений, значит, диагональ куба равна х√3=8√3/см.
Для того, чтобы найти точку пересечения прямых, заданных уравнениями y = x + 2 и y = 3x - 2 мы с вами составим и решим систему линейных уравнений.
Система уравнений:
y = x + 2;
y = 3x - 2.
Решать систему уравнений будем одним из методов — методом подстановки. Давайте в первое уравнение системы вместо y подставим выражение из второго уравнений.
Система уравнений:
3x - 2 = x + 2;
y = x + 2;
3x - x = 2 + 2;
2x = 4;
x = 4 : 2;
x = 2.
Система уравнений:
x = 2;
y = x + 2 = 2 + 2 = 4.
ответ: (2; 4).
Объяснение:
сразу приношу извинения за невозможность нарисовать куб/не работает вложение/, но это совсем не сложно. откройте любой учебник. посмотрите, как он рисуется. дальше, т.к. сечение соединяет два противолежащих ребра куба, будет прямоугольником, (доказать легко- два противоположных ребра куба равны и параллельны и ребро куба перпендикулярно стороне, например, основания, т.е. квадрата, лежащего в основании, тогда оно перпендикулярно и диагонали квадрата - боковой грани по теореме о трех перпендикулярах. площадь этого сечения 64√2 см², пусть, сторона основания х, тогда диагональ боковой грани х√2 см, т.к. все стороны квадрата х, значит, х*х√2=64√2⇒х=8, значит, ребро куба 8 см, квадрат диагонали куба равен сумме квадратов трех его измерений, значит, диагональ куба равна х√3=8√3/см.
ответ 8 см, 8√3см