Многочлен Px при делении на (x + 1) дает в остатке 1 при делении на (x+1)(x+2)(x+3) дает в остатке многочлен все коэфиценты которого равны. Найти остаток от деления на (x+2)
— Чтобы узнать, возрастает или убывает функция y=6-3x, нужно использовать вот такие правила:
• 1. Смотрим на то, что стоит перед функцией ( знак «+» или «-» ) .
• 2. Мы увидели, какой знак стоит перед функцией. Это знак «-». Теперь, переходим к следующему пункту нашего правила.
• 3. Теперь, чтобы нам легче узнать, возрастающая или убывающая эта функция, возьмём пример с возрастающей функцией и убывающей. Например: y=6x-2. В данном случае функция возрастающая, т.к. перед «x» подразумевается знак «+». А вот возьмём ещё один пример, только с убывающей функцией: -x+1. Перед «х» стоит знак «-», значит, функция убывающая
• 4. Ну, а теперь, по примеру, будем определять: возрастает или убывает функция y=6-3x .
• 5. y=6-3x. Мы видим, то что перед «х» стоит знак «-», значит, функция убывающая.
• ответ:
Функция y=6-3x убывает.
— Фу-у-ух, как же я это долго писала! Надеюсь, я Вам и остальным участникам! Удачи! :³
Примем: Х км/час скорость по шоссе; 32/Х время по шоссе; (Х+20) скорость по автостраде; 60/(Х+20) время по автостраде. Так как общее время = 1 час, составим и решим уравнение: 32/Х + 60/(Х+20) = 1; приведем к общему знаменателю (Х*(Х+20)) и избавимся от него, умножив на него все члены уравнения: 32Х + 640 + 60Х = Х² + 20Х; Х²-72Х - 640 = 0; Д=72²+4*640 = 5184+2560 = 7744; Д>0, продолжим; Х₁ = (72 + √Д)/2 = (72 + √7744)/2 = (72+88)/2 = 80 (км/час); Х₂ =72-√Д = -8 (в расчет не берем, как не имеющий смысла) Х+20 = 80+20 = 100 (км/час); ответ: скорость по шоссе 80км/час; скорость по автостраде 100 км/час; Проверка: 32/80 +60/100 = 1; 0,4+0,6=1; 1=1
• Решение:
— Чтобы узнать, возрастает или убывает функция y=6-3x, нужно использовать вот такие правила:
• 1. Смотрим на то, что стоит перед функцией ( знак «+» или «-» ) .
• 2. Мы увидели, какой знак стоит перед функцией. Это знак «-». Теперь, переходим к следующему пункту нашего правила.
• 3. Теперь, чтобы нам легче узнать, возрастающая или убывающая эта функция, возьмём пример с возрастающей функцией и убывающей. Например: y=6x-2. В данном случае функция возрастающая, т.к. перед «x» подразумевается знак «+». А вот возьмём ещё один пример, только с убывающей функцией: -x+1. Перед «х» стоит знак «-», значит, функция убывающая
• 4. Ну, а теперь, по примеру, будем определять: возрастает или убывает функция y=6-3x .
• 5. y=6-3x. Мы видим, то что перед «х» стоит знак «-», значит, функция убывающая.
• ответ:
Функция y=6-3x убывает.
— Фу-у-ух, как же я это долго писала! Надеюсь, я Вам и остальным участникам! Удачи! :³
Х км/час скорость по шоссе;
32/Х время по шоссе;
(Х+20) скорость по автостраде;
60/(Х+20) время по автостраде.
Так как общее время = 1 час, составим и решим уравнение:
32/Х + 60/(Х+20) = 1;
приведем к общему знаменателю (Х*(Х+20)) и избавимся от него, умножив на него все члены уравнения:
32Х + 640 + 60Х = Х² + 20Х;
Х²-72Х - 640 = 0;
Д=72²+4*640 = 5184+2560 = 7744; Д>0, продолжим;
Х₁ = (72 + √Д)/2 = (72 + √7744)/2 = (72+88)/2 = 80 (км/час);
Х₂ =72-√Д = -8 (в расчет не берем, как не имеющий смысла)
Х+20 = 80+20 = 100 (км/час);
ответ: скорость по шоссе 80км/час; скорость по автостраде 100 км/час;
Проверка: 32/80 +60/100 = 1; 0,4+0,6=1; 1=1