Моторний човен рухається річкою зі швидкістю течії 2 км/год.Він проплив 18 км за течією та 14 км проти течії, витративши 3 год 15 хв. Необхідно знайти власну швидкість човна
Пусть v1 км/ч - скорость лодки, а v2 км/ч - скорость течения. Тогда при следовании лодки по течению её скорость составила v1+v2 км/ч, а при следовании против течения - v1-v2 км/ч. Так как 1 час 24 минуты = 1,4 часа, то по условию 30/(v1+v2)=1,2 и 30/(v1-v2)=1,4. Получена система уравнений:
30/(v1+v2)=1,2 30/(v1-v2)=1,4
v1+v2=30/1,2=25 v1-v2=30/1,4=300/14=150/7
Сложив эти два уравнения и заменив получившимся уравнением первое уравнение системы, получим:
2*v1=325/7 v1-v2=150/7
Из первого уравнения находим v1=325/(2*7)=325/14 км/ч. Подставляя это выражение во второе уравнение, получаем:
= =
x² + 7x - 18 (x - 2) (x + 9) x + 9.
x²+7x-18 = 0 a=1;b=7;c=-18 D = b² - 4ac D = 49 + 72 = 121 (11). x₁ = -b+√D/2a = -7+11/2 = 4/2 = 2.
x₂ = -b -√D/2a = -7 - 11/2 = -18/2 = -9.
ax² + bx + c = a(x - x₁)(x - x₂) = (x - 2) (x + 9).
30/(v1+v2)=1,2
30/(v1-v2)=1,4
v1+v2=30/1,2=25
v1-v2=30/1,4=300/14=150/7
Сложив эти два уравнения и заменив получившимся уравнением первое уравнение системы, получим:
2*v1=325/7
v1-v2=150/7
Из первого уравнения находим v1=325/(2*7)=325/14 км/ч. Подставляя это выражение во второе уравнение, получаем:
325/14-v2=150/7=300/14, v2=325/14-300/14=25/14 км/ч.
ответ: скорость реки равна 25/14 км/ч, скорость лодки равна 325/14 км/ч.