На одном складе было в 3 раза меньше муки, чем на другом. С первого склада отпускали ежедневно по 12 тонн, а со второго по 18 тонн. Через сколько дней муки на складах останется одинаковое количество?
где x - переменная, a, b, c - числа, , называется квадратным.
При решении квадратного неравенства необходимо найти корни соответствующего квадратного уравнения . Для этого необходимо найти дискриминант данного квадратного уравнения. Можно получить 3 случая: 1) D=0, квадратное уравнение имеет один корень; 2) D>0 квадратное уравнение имеет два корня; 3) D<0 квадратное уравнение не имеет корней.
В зависимости от полученных корней и знака коэффициента a возможно одно из шести расположений графика функции
Если требуется найти числовой промежуток, на котором квадратный трехчлен больше нуля, то это числовой промежуток находится там, где парабола лежит выше оси ОХ.
Если требуется найти числовой промежуток, на котором квадратный трехчлен меньше нуля, то это числовой промежуток, где парабола лежит ниже оси ОХ.
Если квадратное неравенство нестрогое, то корни входят в числовой промежуток, если строгое - не входят.
Такой метод решения квадратного неравенства называется графическим.
Формализуем условие задачи. Пусть n солдат расставлены в k полных шеренг, тогда n=10k. Пусть если солдат расставить по 11 человек, в последней шеренге окажется m человек. Тогда n=11(k минус 3) плюс m. Наконец, пусть при расстановке в шеренги по 7 человек в последней будет l человек. Тогда n=7(k плюс 9) плюс l. Cоставим систему и решим её:
система выражений новая строка n=10k, новая строка n=11(k минус 3) плюс m, новая строка n=7(k плюс 9) плюс l, новая строка m меньше 11, новая строка l меньше 7 конец системы . равносильно система выражений k=33 минус m,k= дробь: числитель: 63 плюс l, знаменатель: 3 конец дроби ,m меньше 11, l меньше 7 конец системы . равносильно система выражений \6l плюс 3m=36,m меньше 11, l меньше 7 конец системы .
Объяснение:
Решение квадратного неравенства
Неравенство вида
где x - переменная, a, b, c - числа, , называется квадратным.
При решении квадратного неравенства необходимо найти корни соответствующего квадратного уравнения . Для этого необходимо найти дискриминант данного квадратного уравнения. Можно получить 3 случая: 1) D=0, квадратное уравнение имеет один корень; 2) D>0 квадратное уравнение имеет два корня; 3) D<0 квадратное уравнение не имеет корней.
В зависимости от полученных корней и знака коэффициента a возможно одно из шести расположений графика функции
Если требуется найти числовой промежуток, на котором квадратный трехчлен больше нуля, то это числовой промежуток находится там, где парабола лежит выше оси ОХ.
Если требуется найти числовой промежуток, на котором квадратный трехчлен меньше нуля, то это числовой промежуток, где парабола лежит ниже оси ОХ.
Если квадратное неравенство нестрогое, то корни входят в числовой промежуток, если строгое - не входят.
Такой метод решения квадратного неравенства называется графическим.
Формализуем условие задачи. Пусть n солдат расставлены в k полных шеренг, тогда n=10k. Пусть если солдат расставить по 11 человек, в последней шеренге окажется m человек. Тогда n=11(k минус 3) плюс m. Наконец, пусть при расстановке в шеренги по 7 человек в последней будет l человек. Тогда n=7(k плюс 9) плюс l. Cоставим систему и решим её:
система выражений новая строка n=10k, новая строка n=11(k минус 3) плюс m, новая строка n=7(k плюс 9) плюс l, новая строка m меньше 11, новая строка l меньше 7 конец системы . равносильно система выражений k=33 минус m,k= дробь: числитель: 63 плюс l, знаменатель: 3 конец дроби ,m меньше 11, l меньше 7 конец системы . равносильно система выражений \6l плюс 3m=36,m меньше 11, l меньше 7 конец системы .
Объяснение:
лучший ответ