в левой части неравенства стоит квадратный корень,который принимает только неотрицательные значения,поэтому правая часть неравенства тем более должна быть неотрицательной: x> =0.
Х км проехал первый велосипедист до встречи, 50-х км проехал второй велосипедист до встречи. х/2 км/ч - скорость первого велосипедиста, (50-х)/2 км/ч - скорость второго велосипедиста. ч - время всего пути первого велосипедиста. ч - время всего пути второго велосипедиста. Разница во времени 1 ч 40 мин = часа. Уравнение . После преобразований . Корни уравнения 30 и 100. Через х выразили расстояние, пройденное первым велосипедистом до встречи. Оно не может быть больше всего пути в 50 км. Поэтому 100 не подходит к задаче. 30 : 2 = 15 км/ч скорость первого велосипедиста. (50 - 30) : 2 = 10 км/ч скорость второго велосипедиста.
v - знак квадратного корня.
v(3x-2)< =x одз: 3x-2> =0; x> =2/3
в левой части неравенства стоит квадратный корень,который принимает только неотрицательные значения,поэтому правая часть неравенства тем более должна быть неотрицательной: x> =0.
возведем обе части в квадрат:
3x-2< =x^2
3x-2-x^2< =0
x^2-3x+2> =0
x^2-3x+2=0
d=(-3)^2-4*1*2=1
x1=(3-1)/2=1; x2=(3+1)/2=2
++
с учетом одз: x e [2/3; 1] u [2; + беск.)
подробнее - на -
50-х км проехал второй велосипедист до встречи.
х/2 км/ч - скорость первого велосипедиста,
(50-х)/2 км/ч - скорость второго велосипедиста.
ч - время всего пути первого велосипедиста.
ч - время всего пути второго велосипедиста.
Разница во времени 1 ч 40 мин = часа.
Уравнение .
После преобразований .
Корни уравнения 30 и 100. Через х выразили расстояние, пройденное первым велосипедистом до встречи. Оно не может быть больше всего пути в 50 км. Поэтому 100 не подходит к задаче.
30 : 2 = 15 км/ч скорость первого велосипедиста.
(50 - 30) : 2 = 10 км/ч скорость второго велосипедиста.