В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
gryzzly12
gryzzly12
20.04.2023 15:39 •  Алгебра

Написать уравнение касательной к графику f(x)=x^3-3x+5; x0= -1

Показать ответ
Ответ:
lenochkasadyho
lenochkasadyho
06.10.2020 17:28
F(x) = x³ - 3x + 5
f'(x) = (x³ - 3x + 5)' = 3x² - 3
f(x₀) = f(-1) = -1 + 3 + 5 = 7
f'(x₀) = f'(-1) = 3 - 3 = 0
y = f(x₀) + f'(x₀)(x - x₀)
y = 7 + 0·(x - 1) 
y = 7
Проверим, будет ли на самом деле прямая y = 7 являться касательной:
x³ - 3x + 5 = 7
x³ - 3x - 2 = 0
x³ - 4x + x - 2 = 0
x(x² - 4) + (x - 2) = 0
x(x - 2)(x + 2) + (x - 2) = 0
(x - 2)(x(x + 2) + 1) = 0
x = 2   или      x² + 2x + 1 = 0
x = 2    или       (x + 1)² = 0, откуда x = -1
Значит, касательная будет пересекать график данной функции ⇒ через точку x₀ = -1 касательную невозможно провести.
ответ: касательная через данную точку не существует. 
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота